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Spike-based strategies for rapid processing

Abstract

Most experimental and theoretical studies of brain function assume that neurons transmit

information as a rate code, but recent studies on the speed of visual processing impose temporal

constraints that appear incompatible with such a coding scheme. Other coding schemes that use

the pattern of spikes across a population a neurons may be much more efficient. For example,

since strongly activated neurons tend to fire first, one can use the order of firing as a code. We

argue that Rank Order Coding is not only very efficient, but also easy to implement in biological

hardware: neurons can be made sensitive to the order of activation of their inputs by including a

feed-forward shunting inhibition mechanism that progressively desensitizes the neuronal

population during a wave of afferent activity. In such a case, maximum activation will only be

produced when the afferent inputs are activated in the order of their synaptic weights.
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Introduction

Most models of neural systems implicitly assume that information is transmitted by neurons in

the form of a firing rate code. For example, the vast majority of Artificial Neural Network and

Connectionist models use an approach that can be summarized as follows: take a large number

of neuron-like processing units, connect them together with variable weight connections that are

the rough equivalent of synapses, and use a rule in which the activation level of each unit is some

function of the weighed sum of all the inputs to each neuron.  It is a strategy that seems

obviously “biologically inspired”, but there is one feature of real biological neural networks that

is missing from the vast majority of artificial systems. In nearly all artificial systems, each unit

sends its activation level to all the targets as a continuous value, often a floating point number

between 0 and 1 (sometimes between –1 and +1). In contrast, biological neurons send

information in the form of a sequence of spikes. The notion that one can summarize a spike train

as a single continuous variable is one that is very firmly entrenched, not just in artificial neural

networks, but also throughout neuroscience. Indeed, it goes back to the very start of experimental

neurophysiology in the 1920s when the first recordings of the electrical activity of sensory fibers

by Adrian showed that firing rate increased with increasing stimulus intensity(Adrian, 1928).

Even today, neurophysiologists often assume that all the useful information that can be learned

about neural coding can be summarized in the form of a Post-Stimulus Time Histogram (PSTH)

that plots firing rate as a function of time. Given this state of affairs, it is hardly surprising that

few in the artificial neural network community have felt the need to look at alternative coding

schemes. However, in the last few years, an increasing number of scientists has begun to take

seriously the possibility that the use of spikes opens up a whole range of alternative coding

options, some of which have profound implications for the nature of neural computation (Rieke,

Warland, Ruyter van Steveninck, & Bialek, 1996) (Maass & Bishop, 1999). One of the

motivations behind such work has been the realization that there are situations where processing

is too fast to be compatible with a conventional rate based codes. We will review such evidence

and argue that other alternative spike based coding schemes can be considerably more efficient.
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In particular, we will discuss the merits of a coding scheme that encodes information in the

relative timing of spikes across a population of neurons, or more specifically, in the order in

which neurons fire. We will argue that such coding schemes have a number of features that

make them ideally suited for certain types of rapid processing tasks. These features include

speed, robustness, and ease of implementation, and make such schemes particularly attractive for

designing artificial processing systems.

The Processing Speed Constraint

In 1989, Thorpe and Imbert argued that the existence of neurons in the primate brain that could

respond selectively to complex visual stimuli such as faces, food and familiar 3D objects only

100-150 ms after stimulus onset imposes a major constraint on models of visual processing

(Thorpe & Imbert, 1989). They argued that to reach such neurons, information about the

stimulus would need to cross something like 10 layers of neurons on the way from the retinal

photoreceptors. This means that each individual processing stage would need to be operate in not

much more that 10 ms. Given that cortical neurons rarely fire at rates much above 100 Hz, this

seems to imply that such processing can be accomplished under conditions where each

individual neuron only gets to fire either 0 or 1 spike. This seriously limits the precision with

which individual neurons could send information using a firing rate code because it largely

excludes codes that make use of the interspike interval between two spikes as a way of

estimating instantaneous firing rate.

In the last decade, the generality of the processing speed constraint has been reinforced. Initially,

it was possible to argue that the short response latency of inferotemporal neurons with selective

visual responses to stimuli such as faces could constitute a special case. However, more recent

work has shown that even complex natural scenes that have never been seen previously can be

successfully categorized on the basis of only 150 ms of processing in humans (Antal, Keri,

Kovacs, Janka, & Benedek, 2000; Thorpe, Fize, & Marlot, 1996), and even more rapidly in

monkeys (FabreThorpe, Richard, & Thorpe, 1998). This type of Ultra-Rapid Visual

Categorization (URVC) has a number of interesting features. First, it seems to be largely color-
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blind, since monochromatic images are processed very efficiently (Delorme, Richard, & Fabre-

Thorpe, 2000), a result consistent with the idea that it relies primarily on rapid magnocellular

visual pathways. Second, categorization can be as rapid for totally novel images as it is for highly

familiar images, implying that contextual information is largely unnecessary (Fabre-Thorpe,

Delorme, Marlot, & Thorpe, 2001). Third, it is not specific for biologically important categories

like animals, because it is equally fast and accurate for a completely artifactual category, namely,

means of transport (Van Rullen & Thorpe, 2001b). Finally, it does not require direct fixation of

the object, since it works very well for stimuli presented in parafoveal vision (Fabre-Thorpe, Fize,

Richard, & Thorpe, 1998), and has even been demonstrated for images presented in extreme

peripheral vision (Thorpe, Gegenfurtner, Fabre-Thorpe, & Bülthoff, 1999).

The existence of this very rapid and automatic processing mode provides strong evidence for a

largely feed-forward processing mechanism capable of operating very quickly. Other recent

evidence also points in the same direction. In 1992, Oram and Perrett demonstrated that even the

very start of the neuronal response of neurons in inferotemporal cortex could be highly selective

for particular stimuli, a hallmark of feed-forward processing (Oram & Perrett, 1992). Similar

early selectivity was also reported for orientation selective neurons in V1 (Celebrini, Thorpe,

Trotter, & Imbert, 1993). More recently, there have been reports that the selectivity of neurons in

high level visual areas such as inferotemporal cortex could withstand very rapid changes in the

input, resulting either from masking (Kovacs, Vogels, & Orban, 1995; Rolls & Tovee, 1994;

Rolls, Tovee, & Panzeri, 1999), or by rapid serial visual presentation (Keysers, Xiao, Foldiak, &

Perrett, 2000)

Together, these various strands of experimental evidence argue strongly in favor of the view that

at least some forms of visual processing can be performed very rapidly – so rapidly, that few if

any of the neurons at each level of the processing hierarchy will have enough time to emit more

than one spike before those in the next layer have to respond.

While vision is fast, processing in other sensory pathways can in many cases be even faster,

imposing even more serious constraints. For example, neurons in the bat auditory cortex can

respond just 8 ms after stimulus onset, which, given the number of intervening subcortical
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processing stages leaves only a couple of milliseconds at each level (Jen, Sun, & Lin, 1989), and

similarly strong constraints will apply in the somatosensory system. Likewise, there are

numerous cases in invertebrate sensory systems where the input-output timing constraints are

particularly severe (Carr, 1993).

Is Rate Coding Fast Enough?

Most neurophysiologists believe that a Poisson-like rate code is, to a first approximation, a

reasonable description of the way that neurons transmit information. Describing the spike

generation process as Poisson is clearly a simplification, because it ignores the fact that real

neurons have refractory periods that prevent them from generating a large number of spiking

events in a short period. Nevertheless, a Poisson model is a reasonable starting point. Gautrais

and Thorpe looked at the efficiency of such a model as a means of transmitting

information(Gautrais & Thorpe, 1998). They argued that Poisson rate codes are probably too

inefficient to account for the rapid information transmission required for sensory processing.

Suppose that an observer is listening to the output of a single neuron  and, during a 10 ms

observation window,  the neuron emits one spike. If we assume a Poisson process, what can we

conclude about the true firing rate of the neuron? It turns out that the most that we can say is that

there is a 90% chance that the true firing rate lies somewhere in the range 5-474 Hz (Gautrais &

Thorpe, 1998). Clearly, this is unlikely to be of much use for transmitting detailed information

about the level of excitation in a sensory receptor. There are two ways in which the accuracy of

the measurement can be improved. One is to use a longer observation window, the other to use a

population of neurons to transmit the information. In a sense, these are equivalent since

observing a single Poisson process for t milliseconds provides the same result as observing n

Poisson processes for t/n milliseconds. Thus, by using a population of 30 neurons, and an

observed firing rate of 30 spikes in 10 ms, the 90% confidence interval for the population firing

rate can be reduced to roughly 100 Hz ± 30 Hz. However, to obtain a precision of 100 ± 10 Hz

would require no less than 281 redundant and independent neurons. This seems to be a very

expensive way to transmit one analog value with only limited precision.
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While it is clear that, given enough neurons, one can obtain whatever level of precision you could

want, there are numerous situations where there may simply not be enough neurons available.

Take the example of the optic nerve.  There are roughly 100 million photoreceptors in the

primate retina, and information from these receptors needs to be compressed into the activity of

roughly 1 million optic nerve fibers. Since we know that this figure includes both ON- and

OFF-center receptive fields as well as transient and sustained channels, we can assume that for

any particular type of information there will be no more than a few hundred thousand ganglion

cells to cover the entire visual field. Is it really conceivable that one could allow 281 such fibers

to be used to transmit the image intensity at each point in the image? If this were really the case,

one would only be able to sample about 30 by 30 points in the image per channel, a value that

seems totally incompatible with the highly detailed information provided by the retina.

Furthermore, although there may be a small degree of redundancy between neighboring retinal

ganglion cells, the overlap is relatively small (Meister & Berry, 1999), and in general the

available evidence indicates that coding in the retina is designed to eliminate redundancy as much

as possible.

While population rate coding seems incompatible with the bandwidth of the optic nerve, it could

be argued that population rate coding could be used to transmit information between processing

stages further on in the visual system. After all, while there may only be 1 million retinal

ganglion cells projecting to the LGN, there are probably hundreds of millions projecting from

V1 to extra-striate cortical areas such as V2 and MT. While this might seem like a large number,

it needs to be remembered that although there are only a relatively small number of different

types of retinal ganglion cells, the number of different image parameters that need to be encoded

by the activity of cells in V1 is way higher. Neurons in V1 need to encode a large number of

parameters that include orientation, spatial frequency, stereoscopic disparity, color, and motion,

but will also include other more complex characteristics. As yet, we have virtually no idea of how

much bandwidth is required to transmit information between cortical areas. Nevertheless, it

seems likely that the conventional population rate code approach will be hard pushed to cope

with the bandwidth requirements of rapid intra-cortical information transfer.



8

There are other problems facing the traditional rate  coding view. One has emerged  from a

number of recent studies have examined the way in which synapses respond to repeated

activation, for example during a burst of afferent activity. The results are complex, because

different results have been reported for different types of synaptic connections (Abbott, Varela,

Sen, & Nelson, 1997; Thomson, 2000; Thomson, Deuchars, & West, 1996; Tsodyks &

Markram, 1997). In some cases the response to a second spike arriving via a particular synapse

can be transiently enhanced (facilitation). However, in many cases, the effect of a second pulse is

significantly attenuated and there may even be total failure if one attempts to reactivate the same

synapse without leaving a delay of 50 to 100 ms for the synapse to recover. Remarkably, this

even seems to be true for putative thalamic excitatory inputs to cortical pyramidal cells (Stratford,

Tarczyhornoch, Martin, Bannister, & Jack, 1996). If such results are confirmed, it would imply

that cortical cells are effectively blind to firing rates in the lateral geniculate nucleus above about

10 –20 spikes per second! At the very least such results mean that using the firing rates of

individual cells to transmit accurate analog information will be of limited use. Again, the data

strongly indicate that we need to think about how information can be coded across a population

of cells, rather than thinking about each cell in isolation.

Finally, yet another problem for rate coding stems from fact that the firing rate distribution of

real neurons is not flat, but rather heavily skewed towards low firing rates. Consider again the

case of an observer listening to the output of a neuron who detects 1 spike during a 10 ms time

window. What would be the best estimate of the firing rate if we assume a Poisson process? One

might think that the correct answer should be 100 spikes.s-1. However, this would only be the

case if all firing rates were equally likely. Suppose that the distribution of firing rates was

actually fitted by a roughly exponential function as suggested by recent experimental data

(Baddeley et al., 1997), and that the mean firing rate was 30 spikes.s-1. Gautrais and Thorpe

(1998) pointed out that under these conditions, the best estimate of the true firing rate given 1

spike in 10 ms would in fact be 23 spikes.s-1.  To complicate matters even more, the best estimate

of the true firing rate will depend on the length of the observation window, but even when 10

spikes have been observed during 100 ms, the best estimate would still only be 75 spikes.s-1.
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Indeed, in order to obtain an estimated firing rate of 100 spikes.s-1 with a 10 ms window, the

window would need to contain at least 4 spikes (i.e. an observed firing rate of 400 spikes.s-1).

Alternative Coding Schemes

Fortunately, rate coding is by no means the only option available. Over 30 years ago, a meeting

on Neural Coding assessed the plausibility of a wide range of different coding schemes (Perkel

& Bullock, 1968). Many of these alternative schemes are still perfectly viable. Furthermore, in

recent years, a number of other coding schemes have been proposed, many of which make use of

the fact that real neurons use spikes. Indeed, the fact that neurons use spikes to transmit

information opens up a whole new range of coding options, many of which are largely

unexplored.

Let us return to the problem posed by the very rapid processing demonstrated by a number of

recent studies. Such studies indicate that sophisticated processing can be achieved under

conditions where each neuron only gets to fire either 0 or 1 spike, considerably reducing the

number of possible coding schemes that we need to take into consideration. What are the

options? In the following section, we will consider just a few of the more obvious possibilities.

To make the differences as clear as possible, consider the 10 neurons illustrated in figure 1. Let

us suppose that a stimulus has been presented, and we can record the responses of each neuron

during a 10 ms observation window. How might one decode information concerning the

stimulus?

Count Code. The first option is simply to count the number of neurons that have spiked during

a particular time window. This amounts to using the neurons to implement a population rate code

of the type described in the previous section. Of the 10 neurons in figure 1, 9 have fired a spike

during the observation window, which corresponds to a population firing rate of 9/10 spikes per

10 ms, or 90 spikes per second. With such a coding scheme, it is clear that the maximum amount

of information that can be transmitted is equal to log2(N+1) bits, where N is the number of
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neurons, since there are only N+1 = 11 possible states of the system. This sets the upper limit

on the amount of information that can be transmitted using 10 neurons at 3.46 bits.

Figure 1. Comparison between three coding schemes that can operate in a short time window.

The 10 neurons A-J emit spikes at different times. By using a count code, corresponding to a

population rate code, there are only 10+1 states of the system. If the latency of each spike can

be determined with millisecond precision, there are 1010 possible states. Finally, with a rank

code, there are 10!  possible states.

Binary code. A more efficient way of using the same 10 neurons would be to use them as a

binary code. It would be a bit like using the ten neurons as if they were lines on a parallel printer

port. The pattern corresponding to the situation in figure 1 would be the binary pattern

1111111101, one of 1024 possible patterns. In the case of such a binary code, the maximum

amount of information that can be transmitted with N neurons will simply be log2(2
N) = 10  bits.



11

This is clearly a much more efficient code than the simple count code. Note however, that the

information provided by the binary coding scheme depends critically on the length of the

observation window. If the window had  only been 5 ms long, we would have obtained the value

111110000. Binary codes of this sort clearly have the problem that they are not stable over time.

Timing code. The maximum amount of information is provided when the decoding mechanism

can determine the precise time of each spike on each input line. In this case, the total amount of

information that can be transmitted will simply depend on the number of channels, and the

precision with which the latency of each spike can be determined. If we suppose that spikes can

be timed with a precision of 1 ms, the maximum amount of information that could be transmitted

in t ms will be N*log2(t) bits, namely over 33 bits.  Such timing based codes are clearly

potentially extremely powerful, but have the drawback that the decoding mechanism required to

determine the precise latency of each spike may be prohibitively complicated to implement when

using real neurons.

Rank Order code. Yet another possibility is to look not at the precise timing of spikes for  each

input, but rather the order in which the neurons fire (Thorpe & Gautrais, 1998). In this case the

neurons in figure 1 could be thought of as transmitting the order C>B>D>A>E>F>G>J>H>I.

This particular order is only one of the 10! orders that can be obtained with 10 neurons – more

than 3.6 million possibilities. Rank Order Codes can in principle be used to transmit up to

log2(N!) bits of information, which in the case of 10 neurons is over 21 bits.

Codes using synchrony. There are numerous other codes that can be used even when each

neuron is only allowed to fire a maximum of one spike. One popular option is to use synchrony

to link particular groups of neurons as in Figure 2. Rather than treating the 10 neurons as a

binary code (0111011001), the neurons are grouped into two blocks (0111022002), greatly

increasing the number of possible combinations. In this case, the number of possible codes that

can be transmitted in a particular observation window will depend on the number of different

subgroups that can differentiated. Thus, if the number of possible phases that can be

distinguished in a 10 ms time frame was arbitrarily fixed at 3, one could in theory transmit up to
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410  patterns this way, allowing a maximum of log2(4
10) bits of information to be transferred,

namely 20 bits.

Figure 2. Diagram illustrating how the use of synchrony can be used to increase the

bandwidth of the same group of 10 cells. In this case, neurons are labeled as belonging to one

of two groups of synchronized cells.

Hopefully it will be obvious from this very rapid and incomplete overview that even with one

spike per neuron and a short observation window, there are a large number of potential coding

schemes that need to be examined. It is interesting to note that the population rate code, which in

this case corresponds to a simple count code, is by far the least efficient of those considered

here. Thus, as in the previous section, where we argued that a Poisson like rate code appears too

weak to account for the speed and efficiency of information transmission, we again see that the

conventional rate based coding schemes fall well behind other alternative strategies.
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Temporal codes clearly have a big advantage, but before we can build a model that can take

advantage of the potential bandwidth associated with temporal codes, there are two vital issues

that need to be addressed. The first concerns the question of how the temporal information might

get into the spike patterns in the first place. The second issue concerns how neurons in later

processing stages might decode the information.

The origin of temporal information

In the last section, we introduced a number of alternative coding strategies that make use of the

temporal structure of the spikes produced by a population of neurons. We showed that if it was

possible to determine the precise firing time of spikes on each channel, the total amount of

information that can be transmitted can be very large. Alternatively, just using the rank order of

spikes in different neurons can also be very effective. The question now is, where might such

differences in spike timing originate?

One obvious source is the sensory stimulus itself. There are many sensory systems in which the

relative time of arrival of stimuli at different receptors is used for processing. Sound localization

is an obvious example where the fact that a sound pulse reaches the left ear before the right one

is a cue that the sound source lies on the left of the animal. Motion processing in the visual

system also depends on differences in the time of arrival of the stimulus on different receptors.

The temporal precision of such mechanisms can be very impressive (Carr, 1993). For example,

central neurons in the electric fish are sensitive to timing differences of less than a millisecond

(Kawasaki, Rose, & Heiligenberg, 1988), and in bats the echolocation system relies on timing

differences that can be even smaller (Edamatsu & Suga, 1993). There is thus ample evidence that

sensory systems can indeed make use of very small differences in the timing of spikes in

different populations of neurons.

Note, however, that in nearly all these cases, the timing difference was already present in the

sensory stimulus itself. In 1990, we argued that timing differences will emerge at almost every

stage of the sensory pathways, simply as a result of the basic integrate and fire properties of

neurons and that these timing differences can also be used for processing(Thorpe, 1990).
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To explain the principle, note that the basic rate-coding model is based on the notion that sensory

neurons can be considered as analog-to-frequency converters – as stimulus intensity increases,

firing rate increases as well. But an alternative view would be to consider the neuron as an

analog-to-delay converter, a perfectly reasonable suggestion given the basic integrate-and-fire

characteristics of neurons. When a stimulus is presented, the time for the neuron to reach

threshold will depend on the strength of the input – with strong stimuli, the neuron will reach

threshold rapidly, whereas weaker stimuli will take an increasingly long time to fire (see figure

3A). Indeed, if the neuron is a leaky integrator, particularly weak stimuli may never manage to

get the neuron’s membrane potential over threshold. The result is that effectively all sensory

neurons will show a characteristic intensity-latency function in which there is a progressive

decrease in latency with increasing intensity (see figure 3B).

Figure 3. A. Illustration of how a simple integrate-and-fire model of a neuron will produce

spikes whose latency depends on the intensity of the stimulation B. A typical latency-intensity

curve showing how the latency of the first spike will vary as a function of input strength.

Thus, when we look at the pattern of firing illustrated in figure 1, it is not unreasonable to

suppose that this particular order of firing might result from a situation in which the strength of

the sensory stimulus applied to each of the input neurons differs. In this particular case, it is

likely that input C receives the strongest input, input B the next strongest and so on. The idea
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seems very obvious, and yet surprisingly few models in computational neuroscience seem to

make use of this simple feature.

Note that the intensity to delay conversion means that both the precise timing of each spike and

the order code become viable options. However, in the following sections we will concentrate on

the Rank Order Code, because it has a number of interesting computational properties and

because it can be implemented very easily. In the next section, we will return to the question of

coding in the optic nerve to address the question of how effective rank order coding could be as

a means to transmit information from the retina to the brain.

Rank order coding in the retina

The integrate and fire properties of retinal ganglion cells mean that, in response to a flashed

stimulus, the neurons will tend to fire in an order that reflects the spatial characteristics of the

image. The well known center-surround organization of receptive fields in the retina means that

local contrast rather than the physical intensity of the stimulus will be most important for

determining the responsiveness of retinal ganglion cells. Thus, one could in principle use the

order of firing of cells in the optic nerve as a way of encoding the image.

Figure 4. The simple multi-scale model used in Van Rullen and Thorpe’s study of coding in the

optic nerve. The model has ON- and OFF-center receptive fields at a range of spatial scales

(Van Rullen and Thorpe, 2001a).
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This possibility has recently been explored by Rufin Van Rullen (Van Rullen & Thorpe, 2001a)

who examined whether a rank-order coding scheme could be used to efficiently transmit

information about an image from the retina to the cortex. The study used a very simple model of

the retina in which the image was represented by ganglion cells with ON-center and OFF-center

receptive fields at different scales (see figure 4).

In response to the presentation of an image, the activation strength of each ganglion cell will

effectively reflect the result of a local convolution of the image. The problem was then to

investigate how well this activation strength could be transmitted to the brain using different

coding strategies. The conventional view is that retinal ganglion cells transmit information about

their activation levels in the form of a firing rate code. This assumes that the brain can determine

reasonably accurately the firing rates of all the neurons in the optic nerve. But there is an

alternative scheme in which one simply needs to determine the order in which the cells in the

optic nerve fire. This information can be used to reconstruct the image by plugging in the

receptive field of each neuron that fires with a weight that depends on the order with which the

cell fired – those cells that fire first are given a high weighting, whereas those that fire later on are

given less and less importance. Examples of how this reconstruction scheme operates are

illustrated in Figure 5A which illustrates the fact that, when using this rank order scheme, the

identity of many of the objects in natural images can be determined when only 1-2% of the cells

have fired one spike. Although there is little direct data concerning this question, it seems likely

that when a natural image is presented to an array of retinal ganglion cells, 1-2% of cells may

well fire a spike during an observation window sufficiently short to be compatible with the

temporal constraints mentioned earlier.

Note that in order to obtain this result, the weighting of each retinal spike was adjusted using a

form of Look-Up-Table that varies the impact of each spike as a function of its order. In order to

determine which values to use, a large number of natural images were tested to determine how

the typical contrast values varied with rank. As shown in figure 5B, contrast decreases with rank

in a very systematic way. If we take a model retina with 100 000  neurons, and give a maximal

weight to the first neurons to fire, once 10 cells have fired, we should reduce to weighting to
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around 50%, when 100 cells have fired we should use an effective weight of only 15% and when

1000 cells have fired we only need to use a weighting of around 5%. This very rapid drop in

importance explains why the first 1% of cells is so good at allowing reconstruction to occur,

because it effectively means that we can largely ignore cells that fire later on. Indeed, if the aim of

the visual system was to produce an energy efficient code, one that used the smallest number of

spikes to transmit the image, one could use leaky integrators in the retina to ensure that, in

response to a typical scene, only 1-2% of cells actually reach threshold.

Figure 5.  A. Progressive reconstruction of two images based on the order of firing of retinal

ganglion cells. Results are shown as a function of the number of cells that have fired one spike

(adapted from Van Rullen and Thorpe, 2001a). B. Mean contrast values as a function of the

cell’s firing rank (as a percentage of the total number of neurons) averaged over more than

3000 natural images.

It is interesting to note the parallels between this form of rank order based coding scheme and

some of the recent image compression schemes developed by the graphics industry. JPEG

compression applies a series of convolutions to an image and then throws away all the

components below a certain threshold value – to get higher compression, one simply sets the

threshold at a higher level. This is effectively what occurs in the rank order coding model with
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the interesting twist that the data is sent to the next stage in a temporally ordered sequence, with

the most salient data being sent first.

Decoding Rank Order

The rapid decrease in weighting that we use in the image reconstruction can in fact be used more

generally as a decoding mechanism for rank based information. The idea is a simple one, and

can be implemented in a feed-forward network that includes a population of inhibitory

interneurons. Consider the situation in figure 6 in which a neuron N receives excitatory inputs

from five input neurons in the previous layer, but that in addition, each of the input neurons also

connects to a population of interneurons (I) that produce shunting inhibition in the target cell.

Because of the shunting inhibitory circuit, if the input cells fire in a particular order, the first

input to fire will produce a maximal effect on the target cell, but the effectiveness of later firing

inputs will become progressively attenuated by the build up in inhibition. Suppose that, in

addition, the excitatory connection strengths of the five input neurons vary, so that input A has

the strongest connection, input B the second strongest connection and so forth. In such a case, it

is easy to see that the maximum excitation in the target neuron will be produced when the input

neurons fire in the order of their connection strengths, starting with the highest weight (Thorpe

& Gautrais, 1998).

To see why, consider the case where the weights of the excitatory synapses from the input

neurons A to E are respectively 5, 4, 3, 2 and 1. Initially, the modulatory effect of the shunting

inhibition is null and so each input is maximally effective. However, every time one of the inputs

fires, the shunting inhibition attenuates the effectiveness of the inputs. A simple model would be

to say that after each input spike, the sensitivity of the target cell decreases by 50%. In this case,

if the inputs fire in the order A>B>C>D>E, the total excitatory input to the target cell will be

(5*0.50)+(4*0.51)+(3*0.52 )+(2*0.53)+(1*0.54)= 8.06. Any other pattern of firing will

produce a lower level of activation with the weakest response being produced when the inputs

fire in the opposite order, in which case the final activation would be 3.56. By setting the

threshold of the target neuron to an appropriate value, the neuron can be made arbitrarily
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selective. For example, with the threshold set at 8.0, only the order ABCDE would be capable of

driving the neuron over threshold, an impressive result given that there are 5! = 720 possible

orders with 5 inputs.

Figure 6. A simple circuit sensitive to the order of activation of inputs A-E. The neuron N

receives excitatory inputs from each of the inputs. In addition it receives shunting inhibition

from a pool of inhibitory interneurons whose activity increases every time one of the inputs

fires. As a result, only the first input to fire is unaffected by the shunting inhibition, and the

inhibition builds up progressively during the processing of a wave of spikes. The final

activation of the output neuron will be maximal only when the inputs are activated in the order

of their weights.

One of the appealing features of such a decoding scheme is that it is simple to implement in

biological hardware. Most decoding schemes that involve precise temporal information end up

involving large numbers of neurons and are thus expensive to implement. For example, sound

localization makes use of differences in the time of arrival of spikes originating in the left and

right ears, but to decode this information requires expensive delay lines (Carr, 1993). In the case

of rank order decoding, on the other hand, a simple feed-forward network with shunting

inhibition is sufficient. Interestingly, such an arrangement appears to be remarkably frequent in

sensory processing pathways. For example, in the visual system, thalamic afferents originating in

the lateral geniculate nucleus will make direct excitatory connections onto the dendrites of
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pyramidal cells in layers IV and V, but at the same time, they also contact fast-spiking inhibitory

interneurons which make contacts on the soma of the same pyramidal cells (Callaway, 1998). It

seems plausible to suppose that such connections could produce shunting inhibition of the target

cells and could very rapidly reduce the sensitivity of these cells to excitatory inputs. Indeed,

recent intracellular recording studies have shown that in response to a visual input, shunting

inhibition builds up very rapidly during the first milliseconds of the response(Borg-Graham,

Monier, & Fregnac, 1998).  This is exactly what would be needed to implement the rank

decoding scheme proposed here.

Learning and Rank Order Coding

A further advantage of the rank order coding scheme is that it is relatively straightforward to

implement learning in such a network. As noted in the previous section, a target neuron can be

made sensitive to the order of its inputs by using a desensitization mechanism such as shunting

inhibition to progressively decrease the effectiveness of inputs arriving later on. In order to make

a neuron sensitive to a particular temporal sequence of activation, it is sufficient to use a learning

rule that increases synaptic weights for inputs that fire early, and reduces them for inputs that fire

later on. Interestingly, this sort of timing dependent synaptic plasticity is precisely what has been

described recently in a number of studies (Bi & Poo, 1999; Markram, Lübke, Frotscher, &

Sakmann, 1997; Song, Miller, & Abbott, 2000). Excitatory Post-Synaptic Potentials (EPSPs)

that occur before a post-synaptic spike are strengthened, whereas those that fire after the post-

synaptic spike become depressed. Further work will be required to see precisely how such rules

could relate to Rank Order Coding, but it seems likely that the net result of such a mechanism

will be that inputs that always fire in advance of the post-synaptic neuron will receive maximum

reinforcement – and this is precisely what we are looking for.

Using SpikeNet, a software program designed for simulating large networks of asynchronously

firing integrate-and-fire neurons (Delorme, Van Rullen, Gautrais, & Thorpe, 1999) we have

already shown that simple feed-forward architectures are capable of performing non-trivial tasks

that include the detection of faces in natural images (Van Rullen, Gautrais, Delorme, & Thorpe,
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1998). More recently, this work has been extended to include the view-independent identification

of faces (Delorme and Thorpe, 2001, this volume). Both models have the same basic features.

First, the input layer is composed of neurons with ON- and OFF-center receptive fields similar

to those of the retinal ganglion cells in Van Rullen's study of retinal coding described earlier.

These cells perform a local convolution of the image and then emit one spike at a time that

depends on the strength of the signal. These spikes are then sent to arrays of neurons in the next

layer that is the rough equivalent of V1. By connecting the ON- and OFF-center cells

appropriately, it is relatively simple to produce neurons that are selective to edges with a range of

orientations. In both simulations we used 8 orientation maps, corresponding to steps of 45°,

although there is no particular reason why one should not use a much more detailed set of

orientation maps. In the next stage, we use the outputs of the orientation maps to drive feature

detection maps that are trained with a supervised learning rule to respond when the neurons in

the orientation maps fire in the appropriate order.

Extensions to the basic model

Although the face-detection and face-identification models described in the previous section use

an entirely feed-forward processing architecture, other work in our group has shown that other

types of architecture can be incorporated into the same basic scheme. For example, in a recent

study, we showed that horizontal connections between orientation selective maps can be used to

implement contour integration even under conditions where each neuron only gets to fire one

spike (Van Rullen et al, 2001). The pattern of connectivity used is very much the sort that has

been used in a number of recent models of contour processing (Li, 1998). However, because in

our simulations each neuron only fires one spike we can effectively prevent the system from

using a true iterative mechanism. The result is that the model can perform contour integration

very rapidly, in a way that is compatible with the severe timing constraints on visual processing

imposed by studies on ultra-rapid visual categorization.

Another extension to the basic model is to allow top-down influences to modulate processing in

earlier stages. This can be used to implement a simple mechanism for spatial attention in which
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processing of a particular region of the visual scene can be given higher priority by effectively

lowering the threshold of neurons with receptive fields in that area (Van Rullen & Thorpe,

1999). Note that this effective threshold reduction could easily be obtained by providing an

increase in tonic background excitation to neurons in a particular region. The net result is that

information concerning the attended region of visual space will reach later stages in the

processing hierarchy earlier, thus giving them a competitive advantage.

Concluding comments

Rate coding has dominated almost all theoretical and experimental work on neural function for

more than half a century. The idea that the output of a neuron can be distilled into a single

number is certainly an appealing simplification, and one that has proved useful in a great deal of

theoretical work. However, real neurons transmit information as spikes, and as soon as one tries

to implement even the simplest rate coding model with real neurons that produce real spikes,

things start to get very complicated.  As we have tried to argue in this paper, the remarkable

speed of sensory processing, together with the anatomical and physiological constraints mean

that a simple rate coding scheme is almost certainly inadequate. Processing is too fast to allow

the firing rates of individual neurons to be measured with any precision, and although one

certainly can attempt to measure the firing rate of a population of neurons, it turns out that this is

a extremely inefficient way of transmitting information.

Fortunately, the fact that neurons use spikes opens up a huge range of other potential codes,

many of which have received little or no attention. In this paper we have stressed the possibility

that sensory systems could easily make use of the fact that the timing of the first spike in

response to a stimulus provides information about the strength of that stimulus. This simple fact

is one that should be obvious to anyone with even the most rudimentary knowledge of

neurophysiology. And yet, the possibility that the order in which neurons fire could be used to

encode information is one that has hardly been tested experimentally. Our simulations have

shown that networks of asynchronously firing neurons of this sort can indeed perform

sophisticated tasks that include face detection and identification.  The fact that such simulations
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can work even under conditions where each neuron only gets to fire one spike is an important

one, because it is one of only a very few mechanisms that are compatible with the extremely

severe temporal constraints imposed by visual processing.

Clearly, a great deal of further work that will be required if we are to fully understand the

computational implications of spiking neurons. This work will require close interactions between

experimentalists, theoreticians and modelers. But it is an area that holds a great deal of promise

and may well provide a key to our understanding of the brain in decades to come.
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