
Journal of Neuroscience Methods 134 (2004) 9–21

EEGLAB: an open source toolbox for analysis of single-trial EEG
dynamics including independent component analysis

Arnaud Delorme∗, Scott Makeig

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093-0961, USA

Received 17 June 2003; received in revised form 22 September 2003; accepted 16 October 2003

Abstract

We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Math-
works, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG
data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image
plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and
time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data
resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic in-
terface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer
functions allow users to customize data processing using command history and interactive ‘pop’ functions. Experienced MATLAB users can
use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function
help and tutorial information are included. A ‘plug-in’ facility allows easy incorporation of new EEG modules into the main menu. EEGLAB
is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development,
together with sample data, user tutorial and extensive documentation.
© 2003 Elsevier B.V. All rights reserved.

Keywords:EEG; ICA; ERP; Spectral decomposition; Single-trial; Matlab; Software

1. Introduction

Though computing capabilities of nearly every elec-
trophysiology laboratory are now sufficient to allow ad-
vanced signal processing of biophysical signals including
high-density electroencephalographic (EEG) recordings,
many researchers continue to rely on amplitude and latency
measures of peaks in EEG trial averages, termed event
related potentials (ERPs). Historically, the response aver-
aging method was developed under technical constraints
imposed by hardware initially available for psychophysi-
ological experiments in 1950s and 1960s. Before digital
computers were available, researchers had to find a way to
summarize event-related activity across several EEG trials
representing brain responses to sensory stimulations. For

∗ Corresponding author. Tel.:+1-858-458-1927;
fax: +1-858-458-1847.

E-mail address: arno@salk.edu (A. Delorme).
URL: http://sccn.ucsd.edu/.

this purpose, they first used analog registers to sum activity
across EEG data trials. The first computerized response av-
eraging computer, the computer of average transients (CAT,
ca. 1962) helped promote the use of response averaging,
called at first sensory ‘evoked potentials’ (EPs) and later
the sensory/cognitive ‘event-related potentials’ (ERPs).

Using the fast and low-cost digital computers now avail-
able, technical limitations that constrained researchers to
confine their EEG data analysis to simple ERP measures
and parametric statistics are no longer relevant. The ratio-
nale used to justify response averaging is that the single-trial
EEG data time locked to some class of experimental events
consists of an average ERP, whose time course and polarity
is fixed across the trials, plus other EEG processes whose
time courses are completely unaffected by the experiment
events. The cortical sources of ERP features may be assumed
to be spatially distinct from sources of spontaneous EEG ac-
tivities. However, as we have demonstrated recently, focus-
ing data analysis on response averages alone ignores, first,
event-related dynamics that do not appear in, or are poorly

0165-0270/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2003.10.009

http://www.sccn.ucsd.edu/eeglab/


10 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

represented in response averages, and second, ignores on-
going EEG processes that may be partially time and phase
locked by experimental events, thereby contributing portions
of response averages (Delorme et al., 2002; Makeig et al.,
2002).

In the past decades, pioneer researchers have tried to apply
to EEG data analysis techniques developed in electrical en-
gineering and information theory, including time/frequency
analysis (Bressler and Freeman, 1980; Makeig, 1993;
Neuenschwander and Varela, 1993; Pfurtscheller and
Aranibar, 1979; Tallon-Baudry et al., 1996; Weiss and
Rappelsberger, 1996) and Independent Component Analysis
(ICA) (Jung et al., 2001; Makeig et al., 1996, 1997, 1999).
These techniques have revealed EEG processes whose dy-
namic characteristics are also correlated with behavioral
changes, though they cannot be seen in the averaged ERP.
For example, short-term changes in spectral properties of
the ongoing EEG in specific frequency bands may be cor-
related with cognitive processes, e.g. expectancy of a target
stimulus (Makeig et al., 1999) and with visual awareness
(Rodriguez et al., 1999). The sufficiency of studying aver-
age ERPs has also been questioned byMakeig et al. (2002),
who showed that some average ERP peaks may result from
partial synchronization of oscillatory EEG processes to time
locking events in single data trials.

Currently, most EEG researchers still interpret their
data by measuring peaks in event-locked ERP averages.
Free availability of more general and easy-to-use sig-
nal processing software for EEG data may encourage
the wider adoption of more inclusive approaches. Our
EEGLAB software toolbox for Matlab (freely available
from http://www.sccn.ucsd.edu/eeglab/) allows processing
of collections of single EEG data epochs using ICA and
spectral analysis as well as data averaging techniques. Us-
ing this toolbox, we have demonstrated the advantages of
combining ICA, time-frequency analysis, and multi-trial
visualization in several publications (e.g.,Delorme and
Makeig, 2003; Delorme et al., 2002; Makeig et al., 1999,
2002). In EEGLAB, all these functions are available under
a common graphic interface under Matlab, a widely used
multi-platform computing environment. EEGLAB extends
the collection of publicly available Matlab packages for
brain imaging including SPM (Friston, 1995) and FRMLAB
(Duann et al., 2002a) for functional MRI studies and Brain-
storm (Baillet et al., 1999) for EEG/MEG source analysis.

2. Methods and results

2.1. Basic functions

The ICA/EEG toolbox ofMakeig et al. (1997)included
a collection of Matlab functions for signal processing and
visualization of EEG data includingrunica(), a function for
automated infomax ICA decomposition (Makeig et al., 1996,
1997), ERP-image plotting (Jung et al., 1999; Makeig et al.,

1999), a method of visualizing time-locked potential varia-
tions across sets of single trials, and time-frequency decom-
position (Makeig, 1993). By 2002, over 5000 researchers
from over 50 countries had downloaded the ICA/EEG tool-
box. However the provided tools could only be used for
EEG analysis by knowledgeable users who were prepared
to write custom data analysis scripts. EEGLAB, by contrast,
includes a comprehensive graphic user interface for interac-
tively calling and viewing results of enhanced and extended
ICA/EEG toolbox functions while further facilitating the
development of custom analysis scripts by prepared users.
Fig. 1 shows a screen capture of an EEGLAB user session
running under Linux.

2.1.1. Data preprocessing
EEGLAB allows reading of data, event information, and

channel location files in several different formats includ-
ing binary, Matlab, ASCII, Neuroscan, EGI, Snapmaster,
European standard BDF, and Biosemi EDF. Standard data
analysis functions available in EEGLAB include data filter-
ing, data epoch extraction, baseline removal, average ref-
erence conversion, data resampling and extraction of data
epochs time locked to specified experimental events from
continuous or epoched data. EEGLAB also includes meth-
ods allowing users to remove data channels, epochs, and/or
components dominated by non-neural artifacts, by accept-
ing or rejecting visually-cued EEGLAB recommendations
derived from signal processing and information measures.
EEG scalp maps and channel locations can be converted
between several widely-used Cartesian, polar and spherical
coordinate systems and then visualized in two or three di-
mensions. Continuous data and data epochs of any number
of channels can also be scrolled (both vertically and hori-
zontally).

2.1.2. Data structures and events
EEGLAB uses a single structure (‘EEG’) to store data,

acquisition parameters, events, channel locations, and epoch
information as an EEGLAB dataset. This structure can also
be accessed directly from the Matlab command line. Text
files containing event and epoch information can be imported
via the EEGLAB menu. The user can also use the menu to
import event and epoch information in any of several file
formats (Presentation, Neuroscan, ASCII text file), or can
read event marker information from the binary EEG data file
(as in, e.g., EGI, Neuroscan, and Snapmaster data formats).
The menu then allows users to review, edit or transform the
event and epoch information. Event information can be used
to extract data epochs from continuous EEG data, select
epochs from EEG data epochs, or to sort data trials to create
ERP-image plots (Jung et al., 1999; Makeig et al., 1999).
EEGLAB also provides functions to compute and visualize
epoch and event statistics.

To illustrate the utility of EEGLAB, below we employ
a small set of EEG data trials (also available fromhttp://
www.sccn.ucsd.edu/eeglab/) drawn from an experiment

http://www.sccn.ucsd.edu/eeglab/
http://www.sccn.ucsd.edu/eeglab/
http://www.sccn.ucsd.edu/eeglab/


A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 11

Fig. 1. Sample EEGLAB session. Screen capture of an EEGLAB user session running under Linux. Users call EEGLAB functions from the main window
(center) via ‘pop-up’ parameter selection windows (upper left). Warnings and data processing messages are shown in the Matlab command line window
(lower left), which can also be used to call EEGLAB or other data processing functions directly.

in which the subject covertly attended a cued location on
the computer screen, responding quickly with a thumb
button press each time a target (filled square) was briefly
presented at this location (Makeig et al., 1999). In differ-
ent trial blocks, the attended location was any one of five
positions arranged horizontally on the computer screen
above a fixation cross. The sample dataset consists of 80
3-s EEG epochs time-locked to targets presented in the left
visual field between 3◦ and 1.5◦ of visual angle. Data from
thirty-one scalp electrodes (referred to the right mastoid)
were sampled at 500 Hz (later reduced for compactness
to 125 Hz).Fig. 2 shows five sample data epochs and il-
lustrates the capabilities ofeegplot(), the EEGLAB data
scrolling function.

2.2. Multi-trial visualization

2.2.1. ERP-image plotting
The field of electrophysiological data analysis has

been dominated by analysis of one-dimensional averaged
event-related potential (ERP) time series (single channel
values across latencies). The ERP-image is a more general
two-dimensional representation of the data (single chan-
nel values within epochs across latencies) sorted in order
of some relevant measure (e.g., collection time, subject

response, amplitude or phase, etc.).Fig. 3(A) illustrates the
process of constructing ERP-image plots. An ERP image
is a colored rectangular image in which each horizontal
line represents a potential time series during a single ex-
perimental trial. Instead of plotting activity in single trials
as left-to-right traces in which potential is encoded by the
ordinate of a data trace, trials are represented as horizontal
lines whose changing color values indicate the potential
at each time point in the trial. Trials may be plotted in
any sorting order of interest, and a moving average across
adjacent single trials may be used to highlight trial-to-trial
consistency.Fig. 3(B) illustrates the process of sorting the
data trials by the subject reaction time.

Some features of the visual ERP may be produced by
partial phase-resetting of ongoing EEG activities follow-
ing stimulus presentation (Makeig et al., 2002). Fig. 3(C)
illustrates a phase-sorted ERP-image plot, a visualization
tool used to assess whether partial phase synchronization
may account for ERP features. Sorting by value or spectral
amplitude in a given time window, or by an auxiliary vari-
able are also supported. Theerpimage()function can also
plot the response average ERP, changes in signal power and
inter-trial coherence (as defined below) at a selected fre-
quency, the mean signal spectrum, and a representative scalp
topography.



12 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

Fig. 2. Data scrolling. The EEGLAB scrolling data review function,
eegplot(), allows the user to review and reject data by visual inspection.
Here, five data epochs (separated by dashed lines) are plotted at 31
electrode sites (channel names on the left). Other channels in the dataset
can be accessed using the vertical slider on the left. The arrow buttons
(lower left) scroll horizontally through the data. The user may zoom
in on a selected time range and/or electrode group and may change
the plotting parameters using menu options (upper left). Values of the
data point closest to the cursor are continuously displayed at the bottom
of the display. In this example, two (central) data epochs have been
automatically marked for rejection for out-of-bounds values set by the
user in the EEGLAB data-rejection pop-up window (not shown). The
rejection routine here highlights (in white) the channels containing the
outlier values. The user can further mark (or unmark) data epochs for
rejection by clicking on them. Pressing ‘Update Marks’ (lower right)
saves the accumulated rejection markings.

Although a set of event-locked data trials has just one
ERP average, the number of possible ERP images of a set of
trials is very large since the trials can be sorted, optionally
smoothed, and imaged along any path (linear or nonlinear),

Fig. 3. ERP image construction. (A) ERP-image plots are constructed by color-coding (grey bars) potential variations occurring in single-trial epochs
(black traces). (B) Vertically stacking thin color-coded horizontal bars, each representing a single trial in an event-related dataset, produces an ERP image.
Here, trials were sorted vertically according to the subject reaction-time (right curving black trace) before applying a 10-epoch vertical moving average.
The trace below the ERP image shows the ERP average of the imaged data epochs. The dot on the scalp map (top) indicates the scalp position of the
channel whose data are imaged. (C) Theerpimage()function automates several methods of sorting trials. Here, EEG phase in a given time/frequency
window was used as the sorting variable. For each trial, a 10-Hz wavelet was applied to measure oscillatory activity in a 3-cycle window centered at time
0. Trials were then sorted (top to bottom) in order of their alpha band frequency phase values (−� to �) relative to stimulus onset and were displayed
as an ERP image, again smoothed by a 10-trial moving average. The data were not otherwise filtered. The partial inter-trial phase coherence of the data
following the stimulus onset is then visible as a change in the slope of the imaged activity wave fronts to near-vertical after 200 ms. Inter-trial phase
coherence (bottom trace) shows that the distribution of alpha activity phase across trials is non-random (i.e., is partially phase-reset) between 200 and
450 ms (dotted line in lower trace showsP = 0.01), resulting in same alpha activity appearing in the ERP average trace (top panel). The middle trace
shows that mean changes in alpha power (in ‘dB’) did not change significantly (dotted lines) during the epochs. The baseline power level at the analysis
frequency (25.9 dB, relative units) is indicated for possible comparison with other conditions.

through the possibly high dimensional space of trial at-
tributes and/or event values. However, not all trial sorting
orders give equal insights into the brain dynamics expressed
in the data. It is therefore up to the user to decide which
ERP images to study.

ERP images can also be misinterpreted. For example,
using phase-sorting at one frequency (seeFig. 3(C)) can
obscure the presence of oscillatory phenomena at other fre-
quencies. It is important not to lose sight of the fact that
nearly all activity recorded from scalp electrodes is the vol-
ume conducted sum of activities originating within a num-
ber of cortical domains. EEGLAB uses ICA (see below) to
separate out these activities under the assumption that their
activities are temporally independent or at least more tem-
porally independent than any linear combinations of their
signals.

2.3. Independent component analysis (ICA)

A primary tool of EEGLAB is to facilitate the process
of applying and evaluating the results of independent com-
ponent analysis of EEG data. ICA algorithms have proven
capable of isolating both artifactual and neurally gener-
ated EEG sources (Jung et al., 2000; Makeig et al., 1999)
whose EEG contributions, across the training data, are max-
imally independent of one another. ICA was first applied to
EEG by Makeig et al. (1996)and is now widely used in
the EEG research community, most often to detect and re-
move stereotyped eye, muscle, and line noise artifacts (Jung
et al., 1999, 2000). The temporal independence assumption
of ICA is readily understood as a basis for separating artifact
sources, since their activities will ordinarily not be reliably



A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 13

phase-locked to one another, given enough training data. In
practice, however, ICA also has proved capable of separat-
ing biologically plausible brain sources whose activity pat-
terns are distinctly linked to behavioral phenomena. In fact,
many of the biologically plausible sources ICA identifies in
EEG data have scalp maps nearly fitting the projection of a
single equivalent current dipole (Jung et al., 2001; Makeig
et al., 2002), and are therefore quite compatible with the
projection to the scalp electrodes of synchronous local field
activity within a connected patch of cortex.

EEGLAB contains an automated version,runica()
(Makeig, 1997), of the infomax ICA algorithm (Bell and
Sejnowski, 1995) with several enhancements (Amari et al.,
1996; Lee et al., 1999) both as a Matlab function and as
a stand-alone binary C program that allows faster and less
memory-intensive computation. The toolbox also allows
the user to select any of over 20 available ICA algorithms
including JADE (Cardoso and Souloumiac, 1993) and
fixed-point ICA (Hyvärinen and Oja, 2000).

Though it is not our goal here to describe ICA in detail,
we will try to give some insight about its nature. In short,
ICA finds a coordinate frame in which the data projections
have minimal temporal overlap. The core mathematical con-
cept of ICA is to minimize the mutual information among
the data projections or maximize their joint entropy. ICA can
be viewed as an alternative linear decomposition to princi-
pal component analysis (PCA). PCA applied in the tempo-
ral domain would specifically make each successive compo-
nent account for as much as possible of the activity uncor-
related with previously determined components—whereas
ICA seeks maximally independent sources.

This difference in goals leads to dramatic differences in
their results. PCA components are both temporally and spa-
tially orthogonal, a constraint unrealistic for actual EEG
sources, which arise in domains (spatial regions) of par-
tially synchronous activity in electrically oriented cortical
neurons (and possibly glia). Because the density of cortical
connections is weighted towards local connections (�1 cm),
particularly in the network of inhibitory cells that sustain
cortical oscillations (Pauluis et al., 1999), the partially syn-
chronous domains giving rise to EEG activity recorded on
the scalp should be mainly compact—though the extent
and density of these partially synchronous activities are not
known. Through simple volume conduction, the projection
of synchronous activity within nearly any patch of cortex
will be widespread on the scalp. Any electrode will there-
fore sum contributions of EEG sources in a large portion of
cortex. EEG source contributions to scalp electrode poten-
tials depend on source strengths and orientations as much
as source locations. The scalp projections of actual brain
EEG sources, therefore, are nearly always overlapping and
non-orthogonal, contrary to the assumption of PCA. Indeed,
because of the spatial orthogonality constraint, projections
of smaller principal components to the scalp typically re-
semble checkerboard maps that could not represent coherent
activity within a connected patch of cortex.

Therefore, to find biologically plausible sources, PCA
must be followed by an axis rotation procedure. Previously
proposed procedures, such as Promax and Varimax, were
drawn from the factor analysis literature. ICA can be viewed
as a more powerful rotation method, though in practice
ICA is usually applied to the original data without PCA
pre-processing (for details, seeMakeig et al., 1999). ICA
seeks to find component time courses that are mutually inde-
pendent, meaning that component cross-correlations as well
as all the higher order moments of the signals are zero. ICA
is free to adapt to the actual projection patterns of EEG gen-
erators if their activity time courses are (near) independent
of one another. ICA is now being applied to many biomedi-
cal signal processing problems including decomposing fMRI
data (Duann et al., 2002b) and speech and noise separation
(Park et al., 1999). Performing ICA decomposition is most
appropriate when sources are linearly mixed in the recorded
signals, without differential time delays. These assumptions
are precisely met for brain (and non-brain) generator pro-
cesses summed by volume conduction in scalp EEG data.
Because ICA does not attempt to maximize the variance of
each component, ICA components may account for more
equal portions of the total signals than PCA components.
For example, in 32-channel decompositions ICA compo-
nent activities typically account for near 0% to about 5% of
the total signals. ICA may usefully be applied to data with
128 or 256 channels, though meaningful results can also be
achieved using 32 or fewer channels (Makeig et al., 2002).

Some earlier studies applied ICA to collections of ERP
data averages (Makeig et al., 1997, 1999). However, this ap-
proach requires care and caution in interpretation of results.
To separate two or more processes, ICA requires that their
independence be expressed in the data. A small set of data
averages may not include enough conditions in the training
set to demonstrate the independence of the underlying pro-
cesses. If, for example, several processes are partially phase
reset in similar ways, the resulting event-locked response av-
erages may not express their underlying functional and tem-
poral independence. Data averages, by their nature, contain
sums of activities occurring at similar latencies relative to
some class of events. When two or more sources invariably
contribute to a set of response averages at the same latency,
ICA, trained on these averages, may assign their summed
activities to a single component. Trained on the unaveraged
data however, ICA may use their relative variability in sin-
gle trials to separate them. A second problem with applying
ICA to data averages is that the averaging process nearly
cancels out the activity of many of the EEG sources. Thus
applying ICA to the unaveraged EEG data also allows ICA
to separate ongoing activity of EEG sources even if they are
only partially phase-locked for brief time periods. This is
most useful when there are a sufficient number of channels
to fit the most active EEG and artifact processes.

Theoretical assumptions underlying the use of ICA to
decompose EEG data include: (1) the data must contain
enough data points for the temporal independence of the



14 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

underlying sources to be expressed (seeSection 3). (2) No
electrode activity should be a linear mixture of other elec-
trode activities (as may occur for, e.g., average-reference
data). If so, before running ICA training,runica() automati-
cally performs PCA pre-processing to reduce the number of
data dimensions to the rank of the input data. (3) ICA as-
sumes that each data source is spatially stationary through-
out the training data. This restriction may be partially re-
laxed in more recent ICA methods (Anemüller et al., 2003).
(4) ICA assumes that the distributions of activation values
for each EEG source are not precisely Gaussian. When a
source distribution is sub-Gaussian (e.g., as with line noise),
the extended option of infomax ICA must be used to sepa-
rate it. The current distribution of EEGLAB, therefore, fo-
cuses on applying ICA directly to continuous EEG data or,
typically, to concatenated collections of single EEG data tri-
als.Fig. 4 illustrates the use of infomax ICA applied to the
80 EEG epochs of the EEGLAB sample dataset. The lower
the component index returned fromrunica(), the more EEG
data (neural and/or artifactual) it accounts for.

To determine which components are behaviorally relevant
and should be selected for further investigation, EEGLAB
allows the user to plot component contributions to the raw
data spectrum and/or to the trial-average ERP at all (or spec-
ified) channels.Fig. 5(A) shows component contributions
at an alpha frequency to channel POz during the sample
epochs. The function returns the amount contributed by each
component as a percentage of total data power. Another
EEGLAB function for estimating component contributions
to the data, depicted inFig. 5(B), shows component con-
tributions to the trial-average ERP in the−500 to 1000 ms
latency range. These and other visualization functions help
users to select which components to process further using
ERP-image plotting (as described above) or using a variety
of spectral decomposition techniques (discussed below).

Fig. 4. Visualizing independent components. (A) Topographical 2-D scalp maps of the nine independent components (ICs) accounting for the most EEG
variance of the 32 components returned by the ICA algorithm for the sample dataset. The component scalp map values returned by ICA are proportional
to �V (scaling is distributed between the component maps and activity time courses). From its far-frontal scalp map, IC3 appears to account for eye
movement artifacts. (B) The ‘Component Properties’ display for IC3 verifies that it accounts for eye artifacts since its activity spectrum is smoothly
decreasing (bottom panel), and prominent eye movement artifacts appear in its activity ERP image (top right panel). By removing this and other eye
movement components (not shown) from the dataset, the user can remove most evidence of eye movements from the data without removing other activity
of interest (Jung et al., 2000).

2.4. Time/frequency analysis

To assess event-related spectral amplitude, phase and
coherence perturbations in data recorded from single elec-
trodes and/or in ICA components, EEGLAB employs
custom spectral decomposition techniques. Our primary
measures are the baseline or epoch-mean power spectrum
and three event-related time/frequency measures: (1) the
event-related spectral perturbation (ERSP), measuring mean
event-related changes in the power spectrum at a data chan-
nel or component (Makeig, 1993), (2) inter-trial coherence
(ITC magnitude and phase, also called phase-locking fac-
tor) at single channels or components, and (3) event-related
cross-coherence (ERCOH, magnitude and phase) between
two data channels or components.

2.4.1. ERSP
Plots of the baseline-normalized spectrogram or the

event-related spectral perturbation (ERSP) are increasingly
used in the EEG literature to visualize mean event-related
changes in spectral power over time in a broad frequency
range. They generalize the narrow-band event-related desyn-
chronization (ERD) and synchronization (ERS) measures
introduced by Pfurtscheller and colleagues (Pfurtscheller
and Aranibar, 1979).

Calculating an ERSP requires computing the power spec-
trum over a sliding latency window then averaging across
data trials. The color at each image pixel then indicates
power (in dB) at a given frequency and latency relative
to the time locking event. Typically, forn trials, if, Fk(f,
t) is the spectral estimate of trialk at frequencyf and
time t

ERSP(f, t) = 1

n

n∑
k=1

|Fk(f, t)|2 (1)



A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 15

Fig. 5. Evaluating independent component contributions. (A) An EEGLABspectopo()plot showing the components accounting for the largest portions of
10 Hz activity at electrode POz (middle scalp map). The figure shows the power spectrum of the selected channel (top black trace), the activity spectra
of the projection to that channel of each of the 32 components (lower traces), and the scalp power maps of the four largest-contributing components
(4, 5, 7, 10). (B) Anenvtopo()plot showing the envelopes (i.e., the min and max values, over all channels, at each time point) of the five independent
components making the largest potential contributions to the ERP. The black thick traces show the envelope (all channels) of the ERP data and the thin
traces, the envelopes of the depicted component contributions to the ERP.

To computeFk(f, t), EEGLAB uses either the short-time
Fourier transform, a sinusoidal wavelet (short-time
DFT) transform, or a Slepian multitaper decomposition
(Thompson, 1982) that provides a specified time and fre-
quency resolution. In our experience, there are no dramatic
differences between these decompositions (though the num-
ber of cycles in each data window can be critical). Most
often we use a version of sinusoidal wavelets in which the
number of cycles is increased slowly with frequency (Fig. 6).
This feature allows us to obtain better frequency resolution

Fig. 6. Time/frequency decompositions of independent component activities. Time/frequency decomposition was applied to the activities of two independent
EEG components using sinusoidal wavelet transforms, 3 cycles in length at the lowest frequency (6 Hz), increasing linearly with frequency up to nine
cycles at the highest plotted frequency (35 Hz). Using this approach, it is possible to obtain reasonable time and frequency stability at all frequencies.
(A-B) Event-related spectral perturbation (ERSP) plots showing mean changes in spectral power during the epoch, relative to a 1-s pre-stimulus baseline
(plotted vertically on the left). Component IC4 shows a transient increase near 12 Hz centered at 500 ms, while component IC9 shows a power decrease
in this range following 500 ms. (C-D) Phase cross-coherence (ERPCOH) magnitude and phase delay between the two components shown in panels A-B,
zero-masked in regions in which cross-coherence magnitude was not significant (P > 0.01). The components appear to become partially synchronized
above 10 Hz (coherence≤ 0.53) during the period 400–1000 ms with a phase offset near−120◦. Under the minimum phase assumption, this implies
that high-alpha activity of IC9 tends to lead that of IC4 during this period by about 30 ms.

at higher frequencies than a conventional wavelet approach
that uses constant cycle length. This method is also better
matched to the linear scale we use to visualize frequencies.
To visualize power changes across the frequency range, we
subtract the mean baseline log power spectrum from each
spectral estimate, producing the baseline-normalized ERSP.

Significance of deviations from baseline power is assessed
using a bootstrap method. A surrogate data distribution is
constructed by selecting spectral estimates for each trial from
randomly selected latency windows in the specified epoch



16 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

baseline (e.g., prior to stimulus onset), and then averag-
ing these. Applying this process several hundred times (de-
fault: N = 200) produces a surrogate ‘baseline’ amplitude
distribution whose specified percentiles are then taken as
significance thresholds. If sufficient pre-stimulus data are
not available, the surrogate data may be drawn from any
other part or from the whole epoch.Fig. 6(A) and (B)show
significant ERPS phenomena for two independent EEG com-
ponents.

2.4.2. Inter-trial coherence (ITC)
ITC is a frequency-domain measure of the partial or ex-

act synchronization of activity at a particular latency and
frequency to a set of experimental events to which EEG
data trials are time locked. The measure was introduced
by Tallon-Baudry et al. (1996)and termed a ‘phase lock-
ing factor.’ The term ‘inter-trial coherence’ refers to its
interpretation as the event-related phase coherence (ITPC)
or event-related linear coherence (ITLC) between recorded
EEG activity and an event-phase indicator function (e.g. a
Dirac or cosine function centered on the time locking event).
Using the same notation as above inter-trial phase coherence
is defined by

ITPC(f, t) = 1

n

n∑
k=1

Fk(f, t)

|Fk(f, t)| (2)

and inter-trial linear coherence by

ITLC(f, t) =
∑n

i=1Fk(f, t)√
n
∑n

i=1|Fk(f, t)|2
(3)

where || represents the complex norm. The most common
(and default) version is inter-trial phase coherence (called
‘phase-locking factor’ byTallon-Baudry et al., 1996). The
ITC measure takes values between 0 and 1. A value of 0
(not expected in practice based on a finite number of epochs)
represents absence of synchronization between EEG data
and the timelocking events; a value near 1 indicates their
perfect synchronization (i.e., near perfect EEG phase repro-
ducibility across trials at a given latency). In the complex
2-D Cartesian coordinate frame, spectral estimates at given
frequencies and times are returned as complex vectors in the
2-D phase space. The norm and phase angle of each vector
are represented by the magnitude and phase of the spectral
estimate. To compute inter-trail phase coherence (ITPC), we
first normalize the lengths of each of the trial activity vectors
to 1 and then compute their complex average. Thus, only
the information about the phase of the spectral estimate of
each trial is taken into account.

For linear inter-trial coherence (ITLC), the initial nor-
malization step is omitted: the vector sum is computed and
then normalized by RMS power in the single-trial estimates.
EEGLAB function erpimage()computes ITPC at a single
frequency for display beneath an ERP image (Fig. 3(C));
function timef() computes color-coded ITPC or ITLC im-
ages across frequencies (not shown). As for the ERSP, ITC

significance levels are assessed using surrogate data by ran-
domly shuffling the single-trial spectral estimates from dif-
ferent latency windows during the baseline period.

2.4.3. ERCOH
EEGLAB function crossf() computes event-related co-

herence (ERCOH) between two channel or component
activities in sets of trials to determine the degree of syn-
chronization between the two activity measures. As for
ITC, both phase coherence (ERPCOH) and linear coherence
(ERLCOH) measures are supported. Other phase coherence
measures have not (yet) been included in EEGLAB (e.g.,
Lachaux et al., 1999). In EEGLAB, for two signals,a andb,
and using the same notation as above phase cross-coherence
is defined by

ERPCOHa,b(f, t) = 1

n

n∑
k=1

Fa
k (f, t)Fb

k (f, t)∗

|Fa
k (f, t)Fb

k (f, t)| (4)

and linear cross-coherence by

ERLCOHa,b(f, t) =
∑n

k=1F
a
k (f, t)Fb

k (f, t)∗√∑n
k=1|Fa

k (f, t)|2
√∑n

k=1|Fb
k (f, t)|2

(5)

whereFb
k (f, t)∗ is the complex conjugate ofFb

k (f, t). The
magnitude of cross-coherence varies between 0 and 1, a
value of 0 again indicating a complete absence of synchro-
nization at the given frequencyf in the time window centered
on t, and 1 indicating perfect synchronization. As for ITPC,
the normalizing factor in the ERPCOH denominator ensures
that only the relative phase of the two spectral estimates at
each trial is taken into account. Linear ERCOH (ERLCOH),
by contrast, estimates the extent of complex linear relation-
ship between the two signals (proportional amplitudes at a
fixed delay).

When ERCOH magnitude (i.e., norm of the complex-
valued ERCOH vector) is significantly above its expected
baseline value, the phase of the ERCOH vector may indi-
cate, under the minimum phase assumption, which of the
two component activities tends to lead the other at the anal-
ysis frequency. The minimum phase assumption means that
the actual phase lag is less than±180◦. Fig. 6(C)illustrates
significant ERPCOH synchronization between two com-
ponents. Even though independent components were iden-
tified by ICA as being (maximally) independent over the
whole time range, they may exhibit partial but statistically
significant synchronization, within specific event-related
time/frequency windows (Delorme et al., 2002). Here again,
crossf() can assess significance of the observed ERCOH
using the method of surrogate data by computing the ex-
pected ERCOH distribution using randomly selected data
windows from the ‘baseline’ portion of each epoch. Differ-
ent surrogate data selection methods are used to estimate
ERCOH for the two processes, either including or exclud-
ing any common spectral amplitude changes and/or partial



A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 17

phase-locking related to the time-locking experimental
events. These four methods are referred to in EEGLAB as
linear or phase coherence, with or without removal of com-
mon ITC. The preferable method may depend on several
factors that we do not detail here.

2.5. Menu calls and script writing

The EEGLAB graphic user interface (GUI) is designed
to allow non-experienced Matlab users to apply advanced
signal processing techniques to their data. However, more
experienced users can also use the GUI to save time in wri-
ting custom and/or batch analysis scripts in Matlab by in-
corporating menu shortcuts and EEGLAB history functions.
Table 1provides examples of EEGLAB scripts of different
levels of complexity. EEGLAB functions may be roughly
divided into three layers designed to increase ease-of-use for
different types of users:

2.5.1. GUI-based use
Naive Matlab users may choose to interact only with

the main EEGLAB window menu, first to import data into
EEGLAB (in any of several supported formats), and then to
call any of a large number of available data processing and
visualization functions by selecting main-window menu
items organized under five headings: ‘File’ menu functions
read/save data file and data information files. ‘Edit’ menu

Table 1
Sample EEGLAB processing scripts

1 » poperpimage(EEG);
2 » figure; poperpimage(EEG, 1, [1], [], ‘Channel 1 erpimage’,

10, 1);
3 » erpimage(EEG.data(1,:), ones(1, EEG.trials )*EEG.xmax*1000,

linspace(EEG.xmin*1000, EEG.xmax*1000, EEG.pnts), ‘Channel
1 ERP image’, 10, 1, ‘topo’,{1 EEG.chanlocs}, ‘erp’, ‘cbar’);

All scripts assume that the Matlab data structure ‘EEG’ contains the
sample EEGLAB dataset (described in the EEGLAB tutorial and available
for download). Script 1 calls the EEGLAB (‘pop’) interface function that
in turn calls theerpimage()processing function to compute and draw an
ERP image plot (Jung et al., 1999; Makeig et al., 1999) of a selected
single-channel time record for each trial. Additional plotting parameters
can then be entered manually by the user in the resulting pop-up window.
Script 2 performs the same action, but now the ERP-image ‘pop’ function
is called with specific arguments. The ERP-image plot then appears
directly, with no intervening ‘pop’ window. Each time the user selects
an operation from the EEGLAB menu, the resulting Matlab function call
(including all input parameters) is appended to the EEGLAB session
command history. Subsequently, the user can simply copy and paste
commands from the command history to repeat the same actions. Thus, in
Script 3, the ‘pop’ ERP-image function is bypassed and the eponymous
EEGLAB data processing function,erpimage(), is called directly by the
user script referencing parameters stored in the EEG data structure. The
erpimage() function requires no knowledge of the EEG data structure
used by EEGLAB, and can be applied to any user-defined data array.
If the user selects the supplied default parameters in thepop erpimage()
pop-up data entry window, the three scripts will all have the same effect.
See the Matlab help messages for the meaning of thepop erpimage()and
erpimage()function arguments (also available as HTML pages linked to
the main EEGLAB website).

functions allow editing a dataset, changing its properties,
reviewing and modifying its event and channel informa-
tion structures. ‘Tools’ menu functions extract epochs from
continuous data (or sub-epochs from data epochs), perform
frequency filtering, baseline removal, and ICA, and can
assist the user in performing semi-automated artifact data
rejection based on a variety of statistical methods applied to
activity in the raw electrode channels or their independent
components. ‘Plot’ menu functions allow users to visualize
the data in a variety of formats, via (horizontally and verti-
cally) scrolling displays or as trial (ERP), power spectrum,
event-related time/frequency averages, etc. A large number
of visualization functions are dedicated to the display and
review of properties of scalp data channels and underlying
independent data components. The user can make use of
standard Matlab capabilities to edit, print, and/or save the
resulting plots in a variety of formats. Finally, the user can
use ‘Help’ menu functions to call up documentation on
EEGLAB functions and data structures.

2.5.2. EEGLAB command history
Intermediate level users may first use the menu to per-

form a series of data loading, processing and visualization
functions, and then may take advantage of the EEGLAB
command history functions to easily produce batch scripts
for processing similar data sets. Every EEGLAB menu item
calls a Matlab function that may also be called from the Mat-
lab command line. These interactive functions, called ‘pop’
functions, work in two modes. Called without (or in some
cases with few) arguments, an interactive data-entry win-
dow pops up to allow input of additional parameters. Called
with additional arguments, ‘pop’ functions simply call
the eponymous data processing function, without creating a
pop-up window. For example, functionpop erpimage()calls
erpimage(). When a ‘pop’ function is called by the user by
selecting a menu item in the main EEGLAB window, the
function is called without additional parameters, bringing up
its GUI pop-up window to allow the user to enter computa-
tion parameters. When the processing function is called by
EEGLAB, its function call is added as a command string to
the EEGLAB session history variable. By copying history
commands to the Matlab command line or embedding them
in Matlab text scripts, users can easily apply actions taken
during a GUI-based EEGLAB session to a different data set.
A comprehensive help message for each of the ‘pop’ func-
tions allows users to adapt the commands to new EEG data.

2.5.3. Custom EEGLAB scripting
More experienced Matlab users can take advantage of

EEGLAB functions and dataset structures to perform com-
putations directly on datasets using their own scripts that
call EEGLAB and any other Matlab functions while re-
ferencing EEGLAB data structures. Since all the EEGLAB
data processing functions are fully documented, they can
be used directly. Experienced users should benefit from
using all three modes of EEGLAB processing: GUI-based,



18 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

history-based, and autonomously scripted data analyses.
Such users can take advantage of the data structure (‘EEG’)
in which EEGLAB datasets are stored. The GUI interface
uses a single Matlab variable, a structure named ‘EEG’
that contains all dataset information and is always available
at the Matlab command line. This variable can easily be
used and/or modified to perform custom signal processing
or visualizations. Finally, while EEGLAB ‘pop’ functions
(described above) assume that the data are stored in an EEG
data structure, most EEGLAB signal processing functions
accept standard Matlab array arguments. Thus, it is possi-
ble to bypass the EEGLAB interface and data structures
entirely, and directly apply the signal processing functions
to data matrices.

2.6. Distribution, documentation and support

The EEGLAB toolbox is distributed under the GNU Ge-
neral Public License (http://www.gnu.org/licenses/gpl.txt).
The source code, together with web tutorials and function
description help pages, is freely available for download
from http://sccn.ucsd.edu/eeglab/. As the toolbox currently
includes approximately 300 Matlab functions comprising
50,000 lines of Matlab code, it is not possible to describe all
of its functionality in a journal-length paper. An extensive
user tutorial explains in detail how to import and process
data using EEGLAB, including the derivation and evalua-
tion of its independent components. We also provide ‘Fre-
quently Asked Questions (FAQ)’ and ‘Known Bugs’ web
pages, a support email (eeglab@sccn.ucsd.edu), a mailing
list for software updates (eelagbnews@sccn.ucsd.edu), and
a discussion mailing list (eeglablist@sccn.ucsd.edu) that
currently reaches over a thousand EEG researchers.

Open-source EEGLAB functions are not precompiled;
users can read and modify the source code of every function.
Each EEGLAB function is also documented carefully using
a standardized help-message format and each function argu-
ment is described in detail with links to related functions.
We have attempted to follow recognized best practice in
software design for developing EEGLAB. The source code
of EEGLAB is extensively documented and is internally un-
der the Linux revision control system (RCS), which allows
us to easily collaborate with remote researchers on the de-
velopment of new functions. Matlab allows incremental de-
sign of functions, so adding new features to a function can
be easily accomplished while preserving backward compat-
ibility. The EEGLAB history feature also makes it easy to
generate test scripts that we now launch nightly to maintain
EEGLAB stability.

3. Discussion

We have developed EEGLAB, a complete interactive
environment for processing EEG (or MEG) data under Mat-
lab, to provide both standard and advanced EEG processing

functions developed in our own and other laboratories.
EEGLAB is strongly oriented towards single-trial visual-
ization techniques, ICA, and event-related time/frequency
analysis. Because the software was developed by and for
ERP/EEG researchers, we have taken care to make the data
processing as transparent as possible and to allow users to
tune their parameters as easily as possible. We will now
briefly review a few limitations of EEGLAB and, because
the methods incorporated into EEGLAB are not yet widely
practiced, some limitations of ICA applied to high-density
EEG data.

3.1. Limitations of time/frequency decomposition

Filtering methods implemented in EEGLAB take advan-
tage of linear filtering implemented in the Matlab Signal Pro-
cessing toolbox. One of the drawbacks of using linear filters
is that the signal roll-off at the cut-off frequency is weaker
than what it would be using nonlinear filters. However, with
linear filtering, data phase information is preserved across
frequencies. Time-frequency decomposition in EEGLAB is
limited to FFTs, multi-taper analysis, and a single type of
sinusoidal wavelet, as is standard for EEG analysis. Other
methods, for example the Hilbert method, are not currently
implemented. However quantitative comparisons show that
results on EEG data using Hilbert transforms do not dif-
fer dramatically from applying sinusoidal wavelets (Le Van
Quyen et al., 2001). Also, bi-coherence between frequen-
cies cannot yet be assessed within EEGLAB (e.g.,Lachaux
et al., 2003; von Stein and Sarnthein, 2000). We intend in
the future to include functions to assess synchronization
(1) of phase at one frequency with amplitude at another
frequency, (2) of phase synchronization between frequen-
cies, and (3) of amplitude correlation between frequencies.
We welcome further open source contributions implemen-
ting other time-frequency approaches, and have added an
EEGLAB plug-in facility to promote and ease development
of such contributions.

3.1.1. Significance and statistical comparisons across
subjects or conditions

To assess significance of within-subject measures,
EEGLAB uses non-parametrical methods that do not as-
sume a known activity distribution. A null hypothesis
distribution, used to determine significance thresholds, is
estimated by accumulating surrogate data, shuffling the
data across latencies alone, latencies and trials, or trials
alone. To compensate for multiple comparisons, signifi-
cance thresholds may need to be decreased (e.g.Bonferroni,
1950; Holm, 1979). Since it is not reasonable to compute
an unlimited amount of surrogate data to estimate very low
probability thresholds heuristically, we have implemented
a method to fit the observed surrogate data distribution us-
ing a fourth order distribution fit (Ramberg et al., 1979).
This feature will be available in a near-term release of
EEGLAB.

http://www.gnu.org/licenses/gpl.txt
http://sccn.ucsd.edu/eeglab/
mailto:eeglab@sccn.ucsd.edu
mailto:eelagbnews@sccn.ucsd.edu
mailto:eeglablist@sccn.ucsd.edu


A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 19

To test significance across conditions or subjects, we ei-
ther use parametrical tests or accumulated significance re-
sults from each subject. Our ERP functionpop comperp()
currently uses a t-test to compare two conditions for several
subjects. When processing spectral decompositions of one
channel (or component class) from different subjects (al-
ready been masked for significance), ourtftopo() function
applies a threshold derived by simple statistics on the number
of subjects for which the spectral decomposition is signifi-
cant at a give time/frequency point. If not enough subjects
show a significant change at the specified point, this point
is considered non-significant in the group average. This is a
statistically conservative approach. For further statistical as-
sessment, raw data, ERP, or independent component weights
and activity can be exported as ASCII to statistical packages
such as Statview (SAS Institute Inc.), SPSS (SPSS Inc.), or
the Matlab Statistics Toolbox (The Mathworks, Inc.).

3.1.2. ICA stability
Because the infomax ICA algorithm begins with a ran-

dom unmixing matrix and then randomly shuffles the order
of the data time points before each training step, the results
of successive ICA decompositions may be slightly different
even when ICA is performed on the same data. In partic-
ular, the scalp maps and activity time courses of the inde-
pendent components (and their order), may differ slightly
across runs. Therefore, we advise that features of the decom-
position that do not remain stable across decompositions of
the same data should not be interpreted except as irresolv-
able ICA ‘uncertainty.’ Differences between decompositions
trained on somewhat different data subsets may have addi-
tional causes. We are currently investigating the stability of
ICA methods applied to typical datasets (Delorme et al., in
preparation).

3.1.3. Difference between ICA algorithms
Which is the best ICA algorithm to use for EEG decompo-

sition? From a theoretical point of view, all ICA algorithms
maximize independence in an approximate sense (Lee et al.,
2000), while the degree to which EEG data actually fit ICA
assumptions is unknown. Applied to simulated, relatively
low dimensional data sets for which the ICA assumptions
are exactly fulfilled, leading ICA algorithms (including in-
fomax, JADE, and FastICA) return near-equivalent compo-
nents. However, the physiological significance of any differ-
ences in the results of the same or different ICA algorithms
(or of different parameter choices for the various algorithms)
has not been systematically tested and reported—neither by
us nor, as far as we know, by others. Therefore, different ICA
decompositions may give slightly different results, as has
been shown for neural ensemble data (Laubach et al., 1999)
and fMRI data (Duann et al., 2001; Esposito et al., 2002).
Each ICA algorithm has its own particularities. The info-
max algorithm in its native form can only separate sources
with super-Gaussian (i.e., peaky, thick-tailed) activity dis-
tributions. If there are strong electrical artifacts in data, it

is preferable to use the ‘extended’ ICA option ofrunica()
(Lee et al., 1999), to allow the algorithm to detect sources
with sub-Gaussian activity distribution, such as line current
artifacts and/or slow activity.

Whereas infomax implicitly uses a combination of
higher-order moments of the data to find independent com-
ponents, the JADE algorithm (Cardoso and Souloumiac,
1993) diagonalizes all the fourth-order moments explicitly.
Although for low numbers of data channels the JADE algo-
rithm is fast and stable, the memory required to manipulate
all the fourth-order moments becomes quite impractical
with high numbers of channels. Whereas both infomax
and JADE algorithms find and return all the independent
components at once, the default setting of the fixed-point
ICA algorithm of Hyvärinen and Oja (2000)computes and
returns components one by one. The order of the compo-
nents it returns, however cannot be known in advance, and
performing a complete decomposition is not faster than
with infomax. Also, in our experience (see alsoEsposito
et al., 2002) the fixed-point ICA algorithm may be less ro-
bust than infomax ICA when applied high-dimensional real
data. To decompose EEG data, therefore, we most often use
infomax or extended infomax ICA. The infomax algorithm
reliably finds independent components that are physiologi-
cally plausible, functionally distinct, and often have spatial
and functional similarities across data sets, sessions, and
subjects (Delorme et al., 2002; Makeig et al., 2002).

3.1.4. Insufficient data for running ICA
A chief case in which ICA algorithms may not return reli-

able results is when too few data are provided to them. ICA
being a statistical method, if the independence of the func-
tionally distinct EEG processes is not adequately exhibited
in the data, ICA cannot separate them.

The size of the weight matrix being the square of the
number of channels, a number of time points at least a
few times the square of the number of channels is usually
needed to obtain reliable decompositions. These data points
may be drawn from continuous data or from several data
epochs. Of course, additional data points can only improve
the decomposition—when and if relative stationarity of the
spatial structure of the EEG sources set can be assumed. In
our experience, using short baseline-zeroed data epochs that
include task-related behavior may give qualitatively more
consistent results than using longer data epochs. Using short
epochs constrains ICA to focus on the task-relevant portion
of the data.

3.1.5. Nonlinearities
Another case in which ICA will fail to extract all the in-

volved sources occurs when the data are not a linear sum
of the underlying source projections—this chiefly occurs
when the amplifiers become ‘railed’ at high signal levels,
leading to signal ‘clipping’, or when high signal levels ex-
ceed the input range of the A/D converter, leading to sig-
nal ‘wrap-around.’ In either case, the severe nonlinearity



20 A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21

involved will cause linear ICA algorithms to give spurious
results, so such data epochs must be carefully rejected from
the data before running ICA.

3.1.6. Noise
Finally, when the data contains many more strong spatial

sources than the number of recording channels, the addi-
tional sources must be mixed into the output components. In
particular, this may occur during ‘paroxysmal’ noise which
may for instance be introduced into EEG data during strong
head movements. Else, a loose electrode may introduce a
large noise signal not linearly related to any of the other elec-
trode signals. In this case, ICA may dedicate a single com-
ponent to the electrode noise, thus unnecessarily reducing
the number of components available to separate other neural
and artifact sources. Therefore, we find it best to train ICA
on carefully pruned ‘clean’ data epochs, which can, how-
ever, retain spatially stereotyped artifact activity such as eye
blinks and eye movements, repeated muscle activity, etc.

3.1.7. Processing speed
Matlab offers a powerful environment for processing bio-

physical data because of (1) the simplicity of its command
line language, (2) the many Matlab functions made available
by The Mathworks, Inc., and by independent researchers,
and (3) its high-level visualization capabilities. However,
there are two possible problems in using Matlab for pro-
cessing EEG data. First, though ever-increasing speed of
current workstations continues to make processing time of
less limiting importance for data analysis, interpreted com-
puter languages are inherently slower than compiled lan-
guages. Matlab has facilities for compiling and running bi-
nary versions of scripted functions, but their speed may still
be suboptimal. For this reason, we converted to C the most
time consuming EEGLAB function,runica(). Both the Mat-
lab ICA function–runica()—and the binary C-language ICA
function–binca()—can be called from the EEGLAB GUI.
Under Matlab v4, we observed a speed-up of about 10 for
binica() compared torunica(). However, under Matlab v6
the speed-up factor seems to be much smaller (<100%).
Most other EEGLAB functions are less compute intensive.

3.1.8. Memory requirements
Another relative disadvantage of using Matlab to process

high-density EEG data is that Matlab currently converts all
floating-point numbers to 64-byte double-precision, thus re-
quiring large amounts of main memory to process large data
sets. Though hopefully future Matlab versions may allow the
option of processing data in 32-bit floating-point format, we
have taken care to address this issue in EEGLAB by includ-
ing various options to minimize memory usage, such as con-
straining EEGLAB to work on a single dataset, or comput-
ing the ‘activation’ time courses of independent components
only as needed. However, this issue remains a serious prob-
lem for large datasets: parts of the toolbox may have to be
updated to allow very large (e.g., long 256-channel) datasets

to be analyzed within the current Linux 2GB/process limit.
One possibility is to use the Matlab MEX language, an in-
terface between C and Matlab that allows a wider variety
of data types including single precision. Another possibility
is to have EEGLAB load into main memory only a part of
the dataset at a time. However, as 64-bit processors become
more available, the current data space limits of operating
systems and Matlab should increase, in which case the re-
maining problem would only be the burden of purchasing
the necessary RAM.

Current development of EEGLAB focuses on processing
of large datasets (>1 Gb), semi-automatically grouping inde-
pendent component across subjects, and component source
localization. EEGLAB will also be linked to our FMR-
LAB toolbox (http://www.sccn.ucsd.edu/fmrlab) to process
simultaneously recording EEG and fMRI data (Duann et al.,
2002a). We also have begun working with co-developers to
increase the range of EEGLAB functions using the ‘plug-in’
facility, whereby contributors may easily contribute optional
EEGLAB code that is readily incorporated into the EEGLAB
menu. The plug-in facility is designed so that plug-in func-
tions can be used and distributed both within EEGLAB and
independently. By this mechanism we hope to encourage
the open source development of comprehensive EEG (and
MEG) signal processing tools under EEGLAB.

Acknowledgements

The authors acknowledge the contributions to EEGLAB
and its hundreds of functions by many contributors. Princi-
pal among these were Colin Humphries, who wrote the to-
pographic plotting functions and the first version of the data
scrolling display function, Sigurd Enghoff, who wrote the
first versions of the time/frequency functions and translated
the MATLAB-codedrunica() infomax ICA function to bi-
nary, and Tzyy-Ping Jung, who contributed the first version
of theerpimage()function. Therunica() function itself was
written by one of us (SM) building on core ICA code con-
tributed by Tony Bell and Te-won Lee. Several other mem-
bers of the Computational Neurobiology Laboratory at The
Salk Institute contributed other functions. We gratefully ac-
knowledge the support, collaboration and encouragement of
Terrence Sejnowski at Salk Institute throughout this research
process. We thank Stefan Debener and anonymous review-
ers for suggestions on this report, which was supported by
the National Institutes of Health USA and by The Swartz
Foundation.

References

Anemüller J, Sejnowski TJ, Makeig S. Complex independent component
analysis of frequency-domain electroencephalographic data. Neural
Networks 2003;16:1311–23.

Amari S-I, Cichocki A, Yang HH. A new learning algorithm for blind
source separation. Adv Neural Inf Process Syst 1996;8:757–63.

http://www.sccn.ucsd.edu/fmrlab


A. Delorme, S. Makeig / Journal of Neuroscience Methods 134 (2004) 9–21 21

Baillet S, Mosher JC, Leahy RM, Shattuck DW. BrainStorm: a matlab
toolbox for the processing of MEG and EEG signals. In: Proceedings of
the 5th International Conference on Human Brain Map., Neuroimage,
1999;9:246.

Bell AJ, Sejnowski TJ. An information-maximization approach to blind
separation and blind deconvolution. Neural Comput 1995;7:1129–
59.

Bressler SL, Freeman WJ. Frequency analysis of olfactory system EEG in
cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 1980;50:19–
24.

Bonferroni CE. Sulle medie multiple di potenze. Bollettino dell’Unione
Matematica Italiana, 5 third series, 1950. p. 267–70.

Cardoso J-F, Souloumiac A. Blind beamforming for non gaussian signals.
IEE-Proc-F 1993;140:362–70.

Delorme A, Makeig S, Fabre-Thorpe M, Sejnowski T. From single-trials
EEG to brain area dynamics. Neurocomputing 2002;44/46:1057–
64.

Delorme A, Makeig S. EEG changes accompanying learning regulation
of the 12-Hz EEG activity. IEEE Trans Rehabilit Eng 2003;11:133–6.

Duann JR, Jung TP, Kuo WJ, Yeh S, Makeig S, Hsieh JC, Sejnowski TJ,
Measuring the variability of event-related BOLD signals. In: Third In-
ternational Workshop on Independent Component Analysis and Signal
Separation, San Diego, USA, 2001.

Duann JR, Jung TP, Makeig S, Sejnowski TJ. fMRLAB: an ICA Toolbox
for fMRI Data Analysis, In: Human Brain Mapping, 2002a; Sendai,
Japan.

Duann JR, Jung TP, Kuo WJ, Yeh TC, Makeig S, Hsieh JC, Sejnowski
TJ. Single-trial variability in event-related BOLD signals. Neuroimage
2002b;15:823–35.

Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G,
Di Salle F. Spatial independent component analysis of functional MRI
time-series: to what extent do results depend on the algorithm used?
Hum Brain Mapp 2002;16:146–57.

Friston KJ. Statistical parametric mapping: Ontology and current issues.
J Cereb Blood Flow Metab 1995;15:361–70.

Holm S. A simple sequentially rejective multiple test procedure. Scand J
Stat 1979;6:65–70.

Hyvärinen A, Oja E. Independent component analysis: algorithms and
applications. Neural Netw 2000;13:411–30.

Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski
TJ. Analyzing and visualizing single-trial event-related potentials. Adv
Neural Inf Process Syst 1999;11:118–24.

Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski
TJ. Analysis and visualization of single-trial event-related potentials.
Hum Brain Mapp 2001;14:166–85.

Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V,
Sejnowski TJ. Removing electroencephalographic artifacts by blind
source separation. Psychophysiology 2000;37:163–78.

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase
synchrony in brain signals. Hum Brain Mapp 1999;8:194–208.

Lachaux JP, Chavez M, Lutz A. A simple measure of correlation across
time. J Neurosci Methods 2003;123:175–88.

Laubach M, Shuler M, Nicolelis MA. Independent component analyses
for quantifying neuronal ensemble interactions. J Neurosci Methods
1999;94:141–54.

Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie
J, Varela FJ. Comparison of Hilbert transform and wavelet methods for
the analysis of neuronal synchrony. J Neurosci Methods 2001;111:83–
98.

Lee TW, Girolami M, Sejnowski TJ. Independent component analysis
using an extended infomax algorithm for mixed sub-Gaussian and
super-Gaussian sources. Neural Comput 1999;11:417–41.

Lee TW, Girolami M, Bell AJ, Sejnowski TJ. A unifying information-
theoretic framework for independent component analysis. Comput
Math Appl 2000;31:1–21.

Makeig S. Auditory event-related dynamics of the EEG spectrum and
effects of exposure to tones. Electroencephalogr Clin Neurophysiol
1993;86:283–93.

Makeig S, Bell AJ, Jung TP, Sejnowski TJ, Independent component
analysis of electroencephalographic data. In: Touretzky D, Mozer M,
Hasselmo M, editors. Adv Neural Inf Process Syst 1996;8:145–51.

Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind sepa-
ration of auditory eventrelated brain responses into independent com-
ponents. Proc Natl Acad Sci USA 1997;94:10979–84.

Makeig S, Westerfield M, Jung TP, Covington J, Townsend J, Sejnowski
TJ, Courchesne E. Functionally independent components of the late
positive event-related potential during visual spatial attention. J Neu-
rosci 1999;19:2665–80.

Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne
E, Sejnowski TJ. Dynamic brain sources of visual evoked responses.
Science 2002;295:690–4.

Makeig S, et al. Matlab Toolbox for analysis of electrophysiological data.
http://www.cnl.salk.edu/∼scott/ica.html, 1997.

Neuenschwander S, Varela FJ. Visually triggered neuronal oscillations in
the pigeon: an autocorrelation study of tectal activity. Eur J Neurosci
1993;5:870–81.

Park H-M, Jung H-Y, Lee T-W, Lee S-Y. On subband-based blind signal
separation for noisy speech recognition. Electron Lett 1999;35:2011–2.

Pauluis Q, Baker SN, Olivier E. Emergent oscillations in a realistic
network: the role of inhibition and the effect of the spatiotemporal
distribution of the input. J Comput Neurosci 1999;6:27–48.

Pfurtscheller G, Aranibar A. Evaluation of event-related desynchroniza-
tion (ERD) preceding and following voluntary self-paced movement.
PG-138-46. Electroencephalogr Clin Neurophysiol 1979;46.

Ramberg JS, Dudewicz EJ, PTadikalama PR, Mykytka EF. A probability
distribution and its uses in fitting data. Technometrics 1979;21.

Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ.
Perception’s shadow: long-distance synchronization of human brain
activity. Nature 1999;397:430–3.

Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity
of phase-locked and non-phase-locked 40 Hz visual responses in
human. J Neurosci 1996;16:4240–9.

Thompson DJ. Spectrum estimation and harmonic analysis. IEEE Proc
1982;70:1055–96.

von Stein A, Sarnthein J. Different frequencies for different scales of
cortical integration: from local gamma to long range alpha/theta syn-
chronization. Int J Psychophysiol 2000;38:301–13.

Weiss S, Rappelsberger P. EEG coherence within the 13–18 Hz band as
a correlate of a distinct lexical organisation of concrete and abstract
nouns in humans. Neurosci Lett 1996;209:17–20.

http://www.cnl.salk.edu/~scott/ica.html

	EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
	Introduction
	Methods and results
	Basic functions
	Data preprocessing
	Data structures and events

	Multi-trial visualization
	ERP-image plotting

	Independent component analysis (ICA)
	Time/frequency analysis
	ERSP
	Inter-trial coherence (ITC)
	ERCOH

	Menu calls and script writing
	GUI-based use
	EEGLAB command history
	Custom EEGLAB scripting

	Distribution, documentation and support

	Discussion
	Limitations of time/frequency decomposition
	Significance and statistical comparisons across subjects or conditions
	ICA stability
	Difference between ICA algorithms
	Insufficient data for running ICA
	Nonlinearities
	Noise
	Processing speed
	Memory requirements


	Acknowledgements
	References


