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ABSTRACT 
Biomedical signals from many sources including hearts, 
brains and endocrine systems pose a challenge to 
researchers who may have to separate weak signals 
arriving from multiple sources contaminated with 
artifacts and noise.  The analysis of these signals is 
important both for research and for medical diagnosis and 
treatment.  The applications of Independent Component 
Analysis (ICA) to biomedical signals is a rapidly 
expanding area of research and many groups are now 
actively engaged in exploring the potential of blind signal 
separation and signal deconvolution for revealing new 
information about the brain and body. In this review, we 
survey some recent applications of ICA to a variety of 
electrical, magnetic and hemodynamic measurements, 
drawing primarily from our own research.   

1.  INTRODUCTION 

The goal of this review is to provide an overview of 
recent applications of ICA to biomedical signal 
processing, with a focus on recordings from the brain.  
Because it is often diff icult to interpret neural recordings, 
we begin, in Section 2, with an analysis of the 
electrocardiogram (ECG) whose signals are better 
understood.  This application also ill ustrates questions 
concerning the assumptions that are tacitly made in 
applying ICA to biological data.  In Sections 3-6, we 
show how ICA can be applied to the 
electroencephalogram (EEG).  Although these weak 
signals recorded from the surface of the scalp have been 
studied for near 100 years, their origins and relationship 
to brain function remains obscure. ICA may be helpful in 
identifying different types of generators of the EEG as 
well as its magnetic counterpart (MEG).  Finally, we 
show in Section 7 that ICA can also be used to analyze 
hemodynamic signals from the brain recorded using 
functional magnetic resonance imaging (fMRI).  This 
exciting new area of research allows neuroscientists to 
noninvasively measure brain activity in humans 

indirectly through changes in blood flow.  In all of these 
examples, great care must be taken to examine the 
validity of the assumptions that are used by ICA to derive 
a decomposition of the observed signals. Some new 
methods are summarized in Appendix.  
  For biomedical time series analysis (EEG, ECG, etc), 
multiplying the input data matrix by the ‘unmixing’  
matrix at the end of ICA training gives a new matrix 
whose rows, called the component activations, are the 
time courses of relative strengths or activity levels (and 
relative polarities) of the respective independent 
components. The columns of the inverse of the unmixing 
matrix give the relative projection strengths (and 
polarities) of the respective components onto each of the 
sensors. The projection of the ith independent 
component onto the original data channels is given by 
the outer product of the ith row of the component 
activation matrix with the ith column of the inverse 
unmixing matrix, and is in the original units (e.g. µV). 
 

2. ELECTROCARDIOGRAMS (ECGs) 

Several important issues in the application of ICA to 
biomedical data can be ill ustrated by the analysis of 
electrical signals from the heart.  Signals recorded from 
the surface of the chest and abdomen arising from the 
beating heart are used by physicians to diagnose heart 
disease.  Different parts of the heart such as the atria and 
ventricles produce different spatial and temporal patterns 
of electrical activity on the body surface. Recordings are 
typically made from multiple locations, each reflecting a 
different mixture of heart components.  
    ECGs appear to satisfy some of the conditions for 
ICA:  1) Current from the different sources is mixed 
linearly at the ECG electrodes; 2) Time delays in signal 
transmission are negligible; 3) There appear to be fewer 
sources than mixtures; and 4) Sources have non-Gaussian 
voltage distributions. However, movements of the heart 
such as contraction of the chambers during beating 
violates the ICA assumption of spatial stationarity of the 



 

sources. The presence of moving waves of electrical 
activity across the heart also means that the activity of a 
single chamber may be taken for multiple sources by 
ICA. 
   Another assumption of the ICA model, the 
independence between sources, has also lead to some 
confusion. For ICA, independence only refers to lack of 
dependency between coincident source activations, and 
not to possible time-delay dependencies. Artifacts, such 
as those introduced by small movements of the electrical 
contacts should be reasonably independent of signals 
originating from the heart. Signals generated by different 
parts of the heart during the cardiac cycle can also be 
separated by ICA if they are generated at different times 
or if there is jitter in the relative timing of overlapping 
signal sources.  
     Here, we ill ustrate the ICA decomposition of  
maternal and fetal ECGs recorded simultaneously from 
cutaneous electrodes placed on the mother’s abdomen 
and chest (De Moor, 1997; Cardoso, 1998). Each ECG 
electrode was sampled for 12.5 seconds at 200 Hz 
(Figure 1A, left panel). In channels 1-5, measured from 
the abdominal region, the fetal ECG is barely visible. 
Channels 6-8 were recorded from the mother’s chest 
region; here the fetal signals are not visible.  
   These ECG data were treated as observed mixtures of 
independent ECG sources. Figure 1A (right panel) shows 
the eight independent components derived by the 
extended infomax ICA algorithm (Lee et al., 1999a). 
Components 1-4 evidently account for maternal ECG 

with a beat rate of ~72, whereas components 6 and 8 
account for the fetal ECG beating at ~106/min. The 
sources of Components 5 and 7 are unknown. To 
examine the dynamics of each component, we first 
aligned the data to peaks in the mother’s heartbeats, then 
averaged the data and overlaid the projections of 
components 1-4 onto the averaged ECG at electrode 8 
(Figure 1B, left panel). It is thought that the P wave in the 
ECG corresponds to the depolarization of the atria, and 
the QRS complex to the repolarization of atria 
overlapped with the depolarization of the ventricles. ICA 
decomposed the maternal ECG into four components 
presumably accounting for distinct but overlapping 
periods of activation of atria and ventricles. The 
decomposition might potentially be useful to separate the 
depolarization/repolarization of the ventricles and atria.   
However, further experiments will be necessary to 
interpret the ICA decomposition physiologically. Figure 
1B (right panel) shows the averaged peak-aligned fetal 
ECG at electrode 2 plus the projections of components 6 
and 8. Since the averaged fetal ECG has a very poor 
signal-to-noise ratio relative to dominant maternal ECG, 
averaging failed to eliminate vestiges of the large 
maternal ECG signals. The projections of components 6 
and 8, however, show no sign of this interference, 
indicating that their activity accounted mainly for the 
fetal ECG. The abilit y of ICA to separate small vital 
signals from dominant cardiac signals may have future 
applications in the diagnosis of heart disease.  

Figure 1: Decomposition of 
ECG using ICA (see also 
Cardoso, 1998).  (A) (Left 
panel) A 3-sec portion of ECG 
time series containing 
prominent maternal ECG. (Right 
panel) Eight corresponding ICA 
components whose activations 
account for maternal ECG (1-4), 
fetal ECG (6 and 8) and noise (5 
and 7), respectively. (B) (Left 
panel) The data were aligned to 
the peaks of the maternal 
heartbeats and averaged to form 
an averaged maternal ECG. The 
signal (faint trace) at one of the 
chest channels (channel 8) is 
shown. (Right panel) The same 
data aligned to the fetal ECG 
peaks and overlaid at one of the 
abdominal sites (channel 2), 
plus the projections of 
components 6 and 8. Data from 
Database for the Identification 
of Systems (De Moor, 1997).      
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3.  AVERAGED ERPs 

Event-Related Potentials (ERPs) are time series of 
voltages in the ongoing electroencephalogram (EEG) that 
are time- and phase-locked to a set of similar experimental 
event. ERP data are usually averaged prior to analysis to 
increase their signal/noise relative to non-phase locked 
EEG activity including non-neural artifacts. Many studies 
employ ERP peak measures to test clinical or 
developmental hypotheses. However, ERPs cannot be 
easily decomposed into functionally distinct components, 
because their time courses and scalp projections generally 
overlap. ICA can be used to effectively decompose 
multiple overlapping components from sets of related 
ERPs (Makeig et al, 1996; 1997; 1999; Jung et al., 1998). 

    ICA assumptions.  Four main assumptions underlie ICA 
decomposition of EEG (or MEG) time series: (1) Signal 
conduction times are equal, and summation of currents at 
the scalp sensors is linear, both reasonable assumptions 
for currents carried to the scalp electrodes by volume 
conduction at EEG frequencies, or for superposition of 
magnetic fields at SQUID sensors (Nunez, 1981). (2) 
Spatial projections of components are fixed across time 
and conditions. (3) Source activations are temporally 
independent of one another across the input data. (4) 
Statistical distributions of the component activation values 
are not Gaussian.  

   Spatial stationarity.  Spatial stationarity of the 
component scalp maps, assumed in ICA, is compatible 
with the observation made in large numbers of functional 
imaging reports that performance of particular tasks 
increases blood flow within small (≈cm3), discrete brain 
regions (Friston, 1998). ERP sources reflecting task-
related information processing are generally assumed to 
sum activity from spatially stationary generators, although 
stationarity may not apply to some spontaneously 
generated EEG phenomena such as spreading depression 
or sleep spindles (McKeown et al., in press).  Our results 
to date suggest that most EEG oscill ations, including 
alpha rhythms, can be better modeled as composed of 
temporally independent islands of coherent cortical 
activity, rather than as traveling waves (see Makeig et al., 
this volume). 

   Temporal independence.  ICA assumes that sources of 
the EEG must be temporally independent. In the case of  
the averaged ERP brain components have temporally 
overlapping active periods. Independence of ERP features 
may be maximized by, first, suff iciently and 
systematically varying the experimental stimulus and task 
conditions, and, next, training the algorithm on the 
concatenated collection of resulting event-related response 
averages. Fortunately, the first goal of experimental 
design, to attain independent control of the relevant output 

variables, is compatible with the ICA requirement that the 
activations of the relevant data components be 
independent. Thus, for example, the subject group-mean 
ERP data we analyzed successfully using ICA (Fig. 6, 
from Makeig et al., 1999) consisted of collections of 25 to 
75 1-sec averages from different task and/or stimulus 
conditions, each summing a relatively large number of 
single trials (250-7000). Unfortunately, however, 
independent control of temporally overlapping ERP 
components may be diff icult or impossible to achieve. 
Simply varying stimuli and tasks does not guarantee that 
all the spatiotemporally overlapping response components 
appearing in the averaged responses are independently 
activated in the ensemble of input data. Thus, the 
suitabilit y of ICA for decomposition of small sets of ERP 
averages cannot be assumed, and such decompositions 
must be examined very carefully using convergent 
behavioral or physiological evidence before accepting the 
functional independence of the derived components. ERP 
components, even those derived by ICA, may actually 
represent sums of event-related phase and amplitude 
perturbations in components  of the ongoing EEG, an idea 
we are now exploring in detail (cf. Makeig et al., this 
volume). 

    Dependence on source distribution. Mixtures that 
appear normally distributed may be the sum of sources 
that themselves are not Gaussian. In theory, multiple 
Gaussian processes cannot be separated by ICA, although 
in practice even small deviations from normality can 
suff ice to give good results. Also, not all ICA algorithms 
are capable of unmixing independent components with 
sub-Gaussian (negative-kurtosis) distributions. For 
example, the infomax ICA algorithm using the logistic 
nonlinearity is biased towards finding super-Gaussian 
(sparsely-activated) independent components (i.e., sources 
with positive kurtosis). Super-Gaussian sources, which are 
relatively ‘ inactive’ more often than the best -fitting 
Gaussian process, recur in speech and many other natural 
sounds and visual images (Bell and Sejnowski, 1996, 
1997). The assumption of super-Gaussian source 
distributions is compatible with the physiologically 
plausible assumption that an averaged ERP is composed 
of one or more overlapping series of relatively brief 
activations within spatially fixed brain areas performing 
separable stages of stimulus information processing. 
Nonetheless, sub-Gaussian independent components have 
been demonstrated in EEG data (Jung et al., 1998), 
including line noise, sensor noise and low frequency 
activity. In practice, however, sub-Gaussian components 
appear rarely in ERPs or in spontaneous EEG. Possibly, 
the super-Gaussian statistics of EEG activity may be 
statistically compatible with maximum flexibilit y of brain 
information processing. 



 

 
 
Figure 2. ICA identifies spatially periods of fixed scalp 
topography in sets of averaged event-related brain 
potentials. Decomposition of 30 1-s, 31-channel ERPs 
averaging target stimulus responses from 5 subjects 
produced two large components of the late positive 
response (here labeled P3b and Pmp). The top panels show 
the grand mean target response at two scalp channels, Fz 
and Pz (thick traces), and the projections of the two major 
ICA components, P3b and Pmp, to the same channels (thin 
traces). The central panel shows a scatter plot of 10 
averaged target responses at the two electrodes (averages of 
short- and long-latency response trials). The data contained 
two strongly radial (and therefore spatially fixed) features. 
The dashed lines (middle panel) show the directions 
associated with components P3b and Pmp in these data, as 
determined by the relative projection strengths of each 
component to these two scalp channels (black dots on 
cartoon heads). The degree of data entropy attained by ICA 
training is indicated by the (center right) plot insert, which 
shows the (31-channel) scatter-plotted data after nonlinear 
transformation (by tanh()) and rotation to the two 
component axes (from Makeig et al., 1999, by permission). 
 

4.  SINGLE-TRIAL ERPs 

Single-trial event-related potential data are usually 
averaged prior to analysis. However, response averaging 
ignores the fact that response activity may vary widely 
between trials in both time course and scalp distribution. 
This temporal and spatial variabilit y may in fact reflect 
changes in subject performance or in subject state 
(possibly linked to attention, arousal, task strategy, or 
other factors). Thus conventional averaging methods may 

not be suitable for investigating brain dynamics arising 
from intermittent changes in subject state and/or from 
complex interactions between task events. Analysis of 
single event-related trial epochs may potentially reveal 
more information about event-related brain dynamics 
than simple response averaging, but faces three signal 
processing challenges: (1) diff iculties in identifying and 
removing artifacts associated with blinks, eye-
movements and muscle noise, which are a serious 
problem for EEG interpretation and analysis; (2) poor 
signal-to-noise ratio arising from the fact that non-phase 
locked background EEG activities often are larger than 
phase-locked response components; (3) trial-to-trial 
variabilit y in latencies and amplitudes of both event-
related responses and endogenous EEG components.  
    Recently, Jung, Makeig  and colleagues (1998; 1999) 
have developed a set of promising analysis and 
visualization tools based on ICA for multichannel single-
trial EEG records that may overcome these problems. 
These tools have been used to analyze data from a visual 
selective attention experiment on 28 control subjects plus 
22 neurological patients whose EEG data, recorded at 29 
scalp and 2 EOG sites, were often heavily contaminated 
with blink and other eye-movement artifacts. 
     Participating subjects, fourteen males and nine 
females, were right-handed with normal or corrected to 
normal vision. During 76-second trial blocks, subjects 
were instructed to attend to one of five squares 
continuously displayed on a back background 0.8 cm 
above a centrally located fixation point The (1.6x1.6cm) 
squares were positioned horizontally at angles of 0°, 
±2.7° and ±5.5° in the visual field 2° above from the 
point of fixation. Four squares were outlined in blue 
while one, marking the attended location, was outlined in 
green. The location of the attended location was 
counterbalanced across trial blocks. 
    To display the collection of single-trial EEG records, 
we use a recently developed visualization tool, the ̀ ERP 
image' , (Jung et al, 1999b) to ill ustrate inter-trial 
variabil ity. Figure 3A shows all 641 single-trial ERP 
epochs recorded from an autistic subject time-locked to 
onsets of target stimuli (left vertical line). Single-trial 
event-related responses at the vertex (Cz) and parietal 
(Pz) sites are plotted as color-coded horizontal traces (see 
color bar) sorted by the subject' s reaction time in each 
trial (thick black line). The ERP average of these trials is 
plotted below the ERP image. ICA, applied to all these 
31-channel EEG records, separated artifactual, stimulus-
locked, response-locked, stimulus-related phase-resetting, 
response-blocking mu and non-event related background 
EEG activities into different components (Figure 3B), 
allowing: (1) removal of pervasive artifacts from single-
trial EEG records, making possible analysis of highly 
contaminated EEG records from clinical populations 
(Jung et al, 1999b; Jung et al., 2000), (2) identification 
and segregation of stimulus- and response-locked EEG 



 

components, (3) realignment of the time courses of 
response-locked components to prevent temporal 
smearing in the average, (4) investigation of temporal  
and  spatial  variability between  trials,  and   (5) 
separation  of    spatially-overlapping   EEG   activities   
that  may  show  a  variety of distinct relationships to task 
events. The ICA-based analysis and visualization tools 
appear to enhance the amount and quality of information 
in event- or response-related brain signals that can be 
extracted from ERP data.  ICA thus may help researchers 
to take fuller advantage of what until now has been an 
only partially-realized strength of ERP paradigms--the 
ability to examine systematic relationships between 
single trials within subjects (Jung et al., 1999b; 
Kobayashi et al. 1999; Makeig et al., in press-b). 
 
 
 
 

   Although these results show promise and have already 
given us new insights into brain function, the application 
of ICA to single-trial unaverged ERP data must be 
interpreted with caution. In general, unlike the averaged 
ERP decomposition, the effective number of independent 
components contributing to scalp EEG is unknown and 
most likely more than the number of EEG electrodes (i.e., 
the data are over-complete). In our results, ICA appears 
to extract components consistently across hundreds of 
responses, and to identify components falling into 
between-subject clusters recognizable by their spatial and 
temporal patterns as well as by their time-domain (ERP) 
and frequency-domain (event-related spectral 
perturbation) reactivities (Makeig et al., this volume).  

Figure 3: ERP-image plots of target response data from a visual selective attention experiment and various 
independent component categories. (A) Single-trial ERPs recorded at a central (Cz) and a parietal electrode (Pz) from 
an autistic subject and time-locked to onsets of visual target stimuli (left thin vertical line) with superimposed subject 
response times (RT). (B) Single-trial activations of sample independent components accounting for (clockwise) eye 
blink artifacts, stimulus-locked and response-locked ERP components, oscillatory non-phase locked, stimulus phase-
reset alpha, and response-blocked mu activities. 
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5.  EVENT-RELATED ‘ALPHA RINGING’  

EEG data were recorded from a subject performing the 
selective attention EEG experiment described earlier. Fig. 
4 shows the time course of activation of one independent 
component whose activity spectrum had a strong peak in 
the alpha range (10 Hz). Its map (lower right) can be well 
approximated by a single equivalent dipole model,  
suggesting that its source might resemble a small patch of 
cortex in left medial occipital cortex.  
   In this ‘ERP image’ view, the time course of activation 
of this component in over 500 single trials time locked to 
the presentation of a target stimulus are shown. Here the 
trials have been sorted not in order of response time (as in 
Fig. 3), but rather in order of 10-Hz phase at stimulus 
onset (time 0). The phase sorting (above) produces an 
apparent autocorrelation of the signals, suggesting that  
this component produced roughly 1-sec alpha. Note, 
however, that the slope of the maximum-phase lines 
(dark stripes) increases to near- vertical near 500 ms 
(first tick) following stimulus presentation. This change 
in slope represents a systematic phase reset of the alpha 

component following stimulation. The vertically time-
aligned phase maximum from 200 to 700 ms after 
stimulus onset produces the appearance of increased 10-
Hz activity in the portion of the ERP accounted for by 
this component (upper trace). However, (as the middle 
trace shows) mean power at 10 Hz in the single trials 
does not increase above its baseline during the period of 
phase reset. Instead, (as the lower trace shows) the phase 
resetting of the component process by the stimulus, 
below bootstrap significance level (horizontal thin line) 
before stimulus onset, becomes significant about 200 ms 
after stimulus onset, and remains so for over 500 ms. 
   Here ICA allows the actual event-related EEG 
dynamics producing the observed "alpha-ringing" in the 
averaged evoked response to be accurately modeled, 
whereas measuring the average evoked response could 
suggest a quite different (and wrong) conclusion. As 
Makeig et al. (this volume) show, ICA identifies several 
clusters of independent EEG alpha components. 
Typically, several of these combine to form a subject’s  
“alpha rhythm”.  
 

 
Figure 4. ERP-image plot of single-
trial activations of one alpha 
component from the selective visual 
attention experiment decribed in 
Section 4. Top image: Single-trial 
potentials, color coded. Traces below 
image: (top trace) averaged evoked 
response activity of this component, 
showing "alpha ringing". Units: 
relative to uV. (middle trace) Time 
course of RMS amplitude of this 
component at its peak frequency, 10 
Hz. Units: relative to uV. (bottom 
trace) Time course of inter-trial 
coherence at 10 Hz. (thick), plus the 
bootstrap (p=0.02) significance 
threshold (thin). Inter-trial coherence 
measures the tendency for phase 
values at a given time and frequency 
to be fixed across trials.  Bottom left: 
Mean power spectral density of the 
component activity (units, relative 
dB). Bottom right: scalp map showing 
the interpolated projection of the 
component to the scalp electrodes.  

 



 

6. ALERTNESS MONITORING USING AN ICA 
MIXTURE MODEL 

EEG and behavioral data were collected to develop a 
method of objectively monitoring the alertness of 
operators listening for weak signals in background noise 
(Makeig & Inlow, 1993; Jung et al., 1997). Subjects were 
instructed to keep their eyes closed and to push a button 
whenever they detected an above-threshold auditory 
target stimulus. Auditory targets were 350-ms increases 
in the intensity of a 62-dB white noise background, 6 dB 
above their threshold of detectability, presented at 
random time intervals at a mean rate of 10/min, and 
superimposed on a continuous 39-Hz click train evoking 
a 39-Hz steady-state response. Short, and task-irrelevant 
probe tones of two frequencies (568 and 1098 Hz) were 
interspersed between the target noise bursts at 2-4 s 
intervals. EEG was collected from thirteen electrodes 
located at sites of the International 10-20 System, 
referred to the right mastoid, at a sampling rate of 312.5 
Hz. A bipolar diagonal electrooculogram (EOG) channel 
was also recorded. Hits were defined as targets responded 
to within a 100-3000 ms post-stimulus window. Lapses 
were targets not responded to (because of drowsiness or 
loss of vigilance). A continuous performance measure, 
local error rate, was computed by convolving the 
irregularly-sampled performance index time series 
(Hit=0/Lapse=1) with a 95-sec smoothing window 
advanced through the data in 1.64 sec steps.  

   The ICA mixture model can be used for unsupervised 
classification and tracking non-stationary signals (Lee et 
al., 1999c, see Appendix). When this model was applied 
to the 14-channel, 28-min EEG data, the model 
segregated the data into different states or classes. This 
automatic switching allowed the model to model the 
spatial independent component structure in each class.  

   Figure 5 demonstrates an applications of the ICA 
mixture model to assess the EEG correlates of changes in 
dynamic brain state. The thick solid trace shows changes 
in the subject’s local detection error rate during the 
session (e.g., at mins 3-8, error rate increased from 0 to 
100% as the subject became drowsy). The bottom traces 
shows how each 10-sec EEG segment was modeled by 
different classes of the ICA mixture model. Class 2 
evidently accounted for the EEG data during periods in 
which the subject became drowsy. Class 1 accounted for 
the alert EEG data, except for some epochs (marked by 
small x’s on the bottom trace) segregated into ICA Class 
3 accounting mainly for eye-movement contamination or 
out-of-bounds data. ICA Class 2 thus minimizes mutual 
information in drowsy-EEG, while Class 1 minimizes 
mutual information in alert-EEG.  

    When the Class 1 unmixing matrix was used to filter 
EEG data from the entire session, the ICA-filtered 
outputs became more correlated during periods in which 
the subject became drowsy (i.e., the likelihood of 
modeling these EEG epochs by Class 1 was low). 
Conversely, filtering data from the whole session using 
the Class 2 ICA weight matrix accounting for the drowsy 
portion of the session produced component activations 
that were more correlated during the alert portions of the 
session. Presumably, these changes in residual correlation 
between ICA output channels reflect changes in the 
dynamics and topographic structure of the EEG signals 
between alert and drowsy brain states, and could be used 
to predict the level of vigilance of the subject. Figure 5 
shows that the difference between the log likelihood 
measures of these two ICA weight matrices could 
estimate very accurately changes in the behaviorally-
defined level of alertness throughout the session. The 
regressed difference (dot-dashed) was highly correlated 
with actual error rate (R=0.95). 

Figure 5. Alertness monitoring using an ICA 
mixture model. Upper panel: Actual and estimated 
error rates throughout a 28-minute session in which 
the subject performed a continuous auditory 
detection task.  The three ICA weight matrixes 
were derived by ICA mixture model. The actual 
smoothed error rate is shown as a continuous solid 
line and the scaled log likelihood difference 
between Classes 1 & 2 is shown as a dot-dashed 
line (see text). Lower panel: Ten-second EEG 
epochs were segmented into three ICA Classes: 
Class 1 accounted for EEG epochs during which the 
subject’s performance was nearly perfect (i.e., 
alert), while Class 2 accounted for EEG epochs 
during the poor-performance (drowsy) portion of 
the session. Class 3 (marked by x’s) modeled EEG 
epochs heavily contaminated by blinks or eye-
movement.  



 

7.  FUNCTIONAL MAGNETIC RESONANCE 
IMAGING (fMRI)  

The analysis of fMRI brain data is a challenging 
enterprise, as the fMRI signals have varied, unpredictable 
time courses that represent the summation of signals from 
hemodynamic changes as a result of neural activity, from 
motion and machine artifacts, and from physiological 
cardiac and respiratory pulsations, as well as possibly 
other signals.   The relative contribution and exact form 
of each of these components is largely unknown, 
suggesting a role for blind separation methods, if the data 
can be placed in a form consistent with these models 
(McKeown, Jung et al. 1998; McKeown, Makeig et al. 
1998; McKeown and Sejnowski 1998; McKeown 2000). 
The assumptions of ICA apply to fMRI data in a different 
way than to other time series analysis. Here the principal 
of brain modularity suggests that, as different brain 
regions perform distinct functions, these time courses of 
activity should be separable (though not necessarily 
independent). This, plus the relatively high 3-D spatial 
resolution of fMRI, allows ICA to identify spatially 
independent regions with distinguishable time courses. 
However, the principle of spatial independence of active 
brain areas is not absolute, and therefore the functional 
significance of independent fMRI components must also 
be validated by convergent physiological or behavioral 
evidence. 

  General Linear Model (GLM).   Traditional  methods  
of fMRI analysis (Friston 1996) are based on variants of 
the General Linear Model, i.e., 

  X = Gββ + εε    (1) 

Where X is an n by v row mean-zero data matrix with n 
being the number of time points in the experiment and v 
being the total number of voxels in all slices, G is a 
specified n by p design matrix containing the time 
courses of all p factors hypothesized to modulate the 
BOLD signal, including the behavioral manipulations of 
the fMRI experiment, ββ is a p by v matrix of parameters 
to be estimated, and εε is a matrix of noise or residual 
errors typically assumed to be independent, zero-mean 
and Gaussian distributed, i.e. N(0,σ2). Once G is 
specified, standard regression techniques can be used to 
provide a least squares estimate for the parameters in ββ.  
The statistical significance of these parameters can be 
considered to constitute spatial maps (Friston 1996), one 
for each row in ββ, which correspond to the time courses 
specified in the columns of the design matrix. GLM 
assumes: (1) the design matrix is known without error, 
(2) time courses are white; (3) the ββ's follow a Gaussian 
distribution; and (4) the residuals are well-modeled by 
Gaussian noise.  

    ICA Applied to fMRI Data.  Using ICA, we can 
calculate an unmixing matrix, W, to calculate spatially 
independent components,  

 C = WX,                  (2) 

where again, X is the n by v row mean-zero data matrix 
with n being the number of time points in the experiment 
and v being the total number of voxels, W is an n by n 
unmixing matrix,  and C is an n by v matrix of n spatially 
independent components (sICs).  

   If W is invertible, we may write, 

 X = W-1C                 (3) 

An attractive interpretation of eqn (3) is that the columns 
of W-1 represent basis waveforms that can used to 
construct the observed voxel time courses described in 
the columns of X.  These basis waveforms can be 
considered fundamental, as the projection on one basis 
waveform is independent of the projection on another 
(i.e., the rows of C are maximally independent).   

    The similarity between ICA and the GLM can be seen 
by comparing eqns (1) and (3).  Starting with equation (3) 
and performing the initial simple notation substitutions, 
W-1 →  G and C → ββ, we have 

 X = Gββ                    (4) 

which is equivalent to eqn (1) without the Gaussian error 
term.  Note however the important teleological 
differences between equations (1) and (4):  when 
regression equation is used (eqn 1), the design matrix G 
is specified by the examiner, while in eqn. (4) the matrix 
G is calculated from the data by the ICA algorithm, also 
determines ββ eqn. 2. That is, ICA does not reply on a 
priori knowledge about the time courses of brain 
activation and noise sources, and make only weak 
assumptions about their probability distributions. 

    A Case Study.  Figure 6 shows the results of applying 
ICA to a fMRI data set. The fMRI data were acquired 
when a subject performed 15-sec blocks of visually-cued 
or self-paced right wrist supination/pronation alternating 
with 15-sec rest blocks. ICA detected a spatially-
independent component that was active during either 
types of motor activity but not during rest (Figure 6B). 
Figure 6C shows a similar fMRI experiment in which the 
subject was asked to supinate/pronate both wrists 
simultaneously. Here ICA detected a component more 
active during self-paced movements than either visually-
cued or rest periods. Its midline, frontal polar location 
(depicted) is consistent with animal studies showing 
relative activation in this area during self-paced but not 
during visually-cued tasks. 

Future Direction. In many respects, use of GLM and ICA 
are complimentary (Friston, 1998; McKeown & 
Sejnowski, 1998). The advantage of the GLM is that it 
allows the experimenter to check the statistical 
significance of activation corresponding to the 



 

experimental hypothesis (given several statistical 
assumptions). The disadvantages of the GLM are related 
to the fact that the assumptions outlined above may not 
be a fair representation of true fMRI data.  Also, 
dynamic, distributed patterns of brain activity (Kelso, 
Fuchs et al. 1998) may not be well modeled by a 
regression framework that considers each voxel to be a 
discrete, independent unit.  

   ICA, on the other hand, has proved to be a powerful 
method for detecting task-related activations, including 
unanticipated activations (McKeown, Jung et al. 1998; 
McKeown, Makeig et al. 1998; McKeown and Sejnowski 
1998; McKeown, Humphries et al. 1999; McKeown 
2000) that could not be detected by standard hypothesis 
driven approaches.  This may expand the possible types 

of fMRI experiments that can be performed and 
meaningfully interpreted.  

    A possible objection to the use of ICA, however, is 
that it does not provide an experimenter with a 
significance estimate for each activation, which may 
decrease experimenter’s confidence in interpret ing the 
results. McKeown has recently proposed a method that 
uses ICA to characterize the data, and then enables the 
experimenter to test hypotheses in the context of this 
data-defined characterization (McKeown 2000) by 
defining a metric that enables a qualitative assessment of 
the relative mismatch between  hypothesis and data. By 
placing ICA in a regression framework, it is possible to 
combine some of the benefits of ICA with the hypothesis- 
testing approach of the GLM (McKeown 2000).

 

Figure 6.  (A) An fMRI experiment was 
performed in which the subject was 
instructed to perform 15-sec blocks of 
right wrist supination/pronation 
alertnating with rest blocks.  The periods 
of movement where either self-paced or 
visually-cued by a movie of a hand 
supinating and pronating. (B) ICA 
analysis of the experiment detected a 
spatially-independent component that 
was active during both types of motor 
periods but not during rest.  The spatial 
distribution of this component 
(thresholded, z>=2.0) was in the 
contralateral primary motor area and 
ipsilateral cerebellum. (the radiographic 
convention is used, with the right side of 
the image corresponding to the left side 
of the brain and vice-versa) (from 
McKeown, et al., manuscript in 
preparation). (C) A similar fMRI 
experiment was performed, except the 
subject was asked to supinate/pronate 
both wrists simultaneously.  ICA 
detected a component that appeared to 
be more active during self-paced 
movements than either visually-cued or 
rest periods.  The midline region 
depicted (after thresholding at z>=2.0) is 
consistent with animal studies showing 
relative activation of these areas during 
self-paced but not visually-cued tasks. 
(e.g. Kermadi et al. (1997). 
Somatosensory & Motor Research 
14(4): 268-80.) 
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8.  DISCUSSION 

Biomedical signals are a rich source of information 
about physiological processes, but they are often 
contaminated with artifacts and noise and are typically 
mixed in unknown combinations at every available 
sensor.  As we have attempted to show here, ICA holds 
great promise for blindly separating artifacts from 
relevant signals and for further decomposing the mixed 
signals into subcomponents that may index the activity 
of functionally distinct generators.  In addition to the 
analysis of EEG signals, ICA has also been applied to 
magnetoencephalographic (MEG) recordings (Vigario 
and Oja 1999), which carry signals from brain sources 
and are in part complementary to EEG signals.  ICA has 
also been used to analyze data from Positron Emission 
Tomography (PET), a method for following changes in 
blood flow in the brain on slower time scales following 
the injection of radioactive isotopes into the 
bloodstream (Petersen et al., 2000).  Other interesting 
applications of ICA are to the electrocorticogram 
(EcoG), direct measurements of electrical activity from 
the surface of the cortex (Makeig et al., in press-a), and 
to optical recordings of electrical activity from the 
surface of the cortex using voltage-sensitive dyes 
(Schoener et al., 1999). First clinical research 
applications of ICA include the analysis of EEG 
recordings during epileptic seizures (McKeown et al, in 
press-a). 
 
    Although these results show promise and have 
already given us new insights into brain function, the 
application of ICA to biomedical signals is still in its 
infancy. Its results must always be validated using other 
more direct or convergent measures before we can have 
confidence in their interpretation.  Toward this goal, we 
have analyzed simulated EEG recordings generated 
from a head model and dipole sources that include 
intrinsic noise and sensor noise (Makeig et al. in press 
a).  This has given us some understanding of the 
conditions when ICA will fail to separate correlated 
sources of EEG signals.  Another approach to validating 
ICA is to record simultaneously several types of 
signals, such as EEG and fMRI recordings, which 
should provide good spatial resolution (fMRI) and  
temporal resolution (EEG) (Jung, et al. 1999a).  In sum, 
ICA has proven to be a valuable new analytic tool that 
will doubtless be applied fruitfully to many types of 
biomedical data. 
 

9.  APPENDIX:  ICA MIXTURE MODEL 

The extended version (Lee et al, 1999a) of the infomax 
ICA algorithm (Bell and Sejnowski, 1995) was used for 
all of the examples of biomedical signal processing 
summarized here.  Comparisons with other methods can 
be found in the original papers where these results first 

appeared. A Matlab ICA toolbox can be downloaded 
from http://www.cnl.salk.edu/~scott/ica.html.  

   In a mixture model (Duda & Hart, 1973), the 
observed data can be categorized into several mutually 
exclusive classes. When the data in each class are 
modeled as multivariate Gaussian, it is called a 
Gaussian mixture model. We generalize this by 
assuming the data in each class are generated by a linear 
combination of independent, non-Gaussian sources as 
assumed by ICA. We call this model an ICA mixture 
model. This allows modeling of classes with non-
Gaussian structure, e.g., platykurtic or leptokurtic 
probability density functions. The algorithm for 
learning the parameters of the model uses gradient 
ascent to maximize the log likelihood function. In 
previous applications this approach showed improved 
performance in data classification problems (Lee et al., 
1999a), performed blind signal separation in non-
stationary environments (Lee et al., 2000), and learned 
efficient codes for representing different types of 
images (Lee et al. 1999b). 
   Assume that the data are drawn independently and 
generated by a mixture density model (Duda & Hart, 
1973). The likelihood of the data is given by the joint 
density: 
 
 
 
The mixture density is 
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component densities.  C denotes the class and it is 
assumed that the number of classes K, are known in 
advance. Assume that the component densities are non-
Gaussian and the data within each class are described 
by: 

 
where A is a N x M scalar matrix and b is the bias 
vector. The A matrix is called the mixing matrix in 
standard ICA. However, we refer to A as the basis 
matrix to distinguish this from the word mixture in the 
mixture model. The vector s is called the source vector 
and these are also the coeff icients for each basis 
function. It is assumed that the individual sources 
within each class are mutually independent across a 
data ensemble. For simplicity, we consider the case 
where the number of sources is equal to the number of 
mixtures. Figure A.1 shows a simple example of a 
dataset describable by an ICA mixture model. Each 
class was generated using a different A and b.  Class ‘o’ 
was generated by two uniformly distributed sources, 
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whereas class ‘+’ was generat ed by two Laplacian 
distributed sources. The task is to classify the unlabeled 
data points and to determine the parameters for each 
class and the probabilit y of each class for each data 
point.  

Figure 7 A simple example for classifying an ICA 
mixture model. There are two classes, ‘+’ and ‘o’' . Each 
class was generated by two independent variables with 
separate bias terms and basis vectors. Class ‘o’' was 
generated by two uniformly distributed sources, as 
indicated next to the data class. Class ‘+’' was generated 
by two Laplacian distributed sources with a sharp peak 
at the bias and with heavy tails. The inset graphs show 
the distributions of the source variables for each basis 
vector. 
 
    An iterative learning algorithm that performs gradient 
ascent on the total li kelihood of the data has the 
following steps: 
• Compute the log-likelihood of the data for each 

class: 

• Compute the probabilit y for each class given the 
data vector: 

 
• Adapt the basis functions and the bias terms for 

each class. The basis functions are adapted using 
gradient ascent:  

 

• This gradient can be approximated using an ICA 
algorithm, as shown below. The gradient can also 
be summed over multiple data points. An 
approximate update rule was used for the bias 
terms: 

  The gradient of the log of the component density can 
be approximated using a standard ICA model.  There 
are several methods for adapting the basis functions in 
the ICA model (Comon, 1994, Bell & Sejnowski, 1995, 
Cardoso & Laheld, 1996, Hyvarinen & Oja, 1997, Lee 
et al., 1999a).  A main difference between the ICA 
algorithms is in the use of higher order statistics such as 
cumulants versus pre-defined density models. Here, we 
are interested in iteratively adapting the class 
parameters and modeling a wider range of distributions. 
The extended infomax ICA learning rule is able to 
blindly separate unknown sources with sub- and super-
Gaussian distributions. Distributions that are sharply 
peaked around the mean and have heavy tails are called 
super-Gaussians (leptokurtic distributions) and 
distributions with flatter peak such as a uniform 
distribution is called sub-Gaussian (platykurtic 
distribution). A complete derivation of the learning 
algorithm for the ICA mixture model has been reported 
in  (Lee et al., 1999c). 
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