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ABSTRACT

Biomedicd signals from many sources including heats,
brains and endocrine systems pose a dalenge to
reseachers who may have to separate week signals
arriving from multiple sources contaminated with
artifads and noise. The aalysis of these signals is
important both for research and for medicd diagnosis and
treament. The gplications of Independent Component
Analysis (ICA) to biomedicd signas is a rapidly
expanding area of reseach and many groups are now
adively engaged in exploring the potential of blind signal
separation and signal dewnvolution for reveding rew
information about the brain and body. In this review, we
survey some recent applicaions of ICA to a variety of
eledricd, magretic and hemodynamic measurements,
drawing primarily from our own reseach.

1. INTRODUCTION

The goal of this review is to provide an overview of
recet applicdions of ICA to biomedicd signd
processng, with a focus on recordings from the brain.
Because it is often difficult to interpret neural recordings,
we begin, in Sedion 2, with an analysis of the
eledrocardiogram (ECG) whose signals are better
understood  This application also ill ustrates questions
concerning the asumptions that are tadtly made in
applying ICA to hiologicd data. In Sedions 3-6, we
show how ICA <can be @plied to the
eledroencephalogram (EEG). Although these week
signals recorded from the surfaceof the scdp have been
studied for nea 100 yeas, their origins and relationship
to brain function remains obscure. ICA may be helpful in
identifying different types of generators of the EEG as
well as its magnetic counterpart (MEG). Finally, we
show in Sedion 7 that ICA can also be used to analyze
hemodynamic signals from the brain recorded using
functional magnetic resonance imaging (fMRI). This
exciting rew area of reseach alows neuroscientists to
noninvasively measure brain adivity in humans

*

indiredly through changes in blood flow. In all of these
examples, gread cae must be taken to examine the
validity of the assumptions that are used by ICA to derive
a demmposition of the obhserved signals. Some new
methods are summarized in Appendix.

For biomedicd time series analysis (EEG, ECG, etc),
multiplying the input data matrix by the ‘unmixing
metrix at the end of ICA training gves a new matrix
whose rows, cdled the component activations, are the
time wurses of relative strengths or adivity levels (and
relative polarities) of the respedive independent
components. The alumns of the inverse of the unmixing
matrix give the relative projedion strengths (and
polarities) of the respedive mmponents onto ead of the
sensors. The projedion of the ith independent
component onto the original data channels is given by
the outer product of the ith row of the mponent
adivation matrix with the ith column of the inverse
unmixing matrix, and isin the original units (e.g. pV).

2. ELECTROCARDIOGRAMS (ECGS)

Several important issues in the gplication of ICA to
biomedicd data can be illustrated by the analysis of
eledricd signals from the heat. Signals recorded from
the surface of the chest and abdomen arising from the
beding heat are used by physicians to diagnose heat
disease. Different parts of the heat such as the dria and
ventricles produce different spatial and temporal patterns
of eledricd adivity on the body surface Recordings are
typicadly made from multiple locations, eat refleding a
different mixture of heart components.

ECGs appea to satisfy some of the nditions for
ICA: 1) Current from the different sources is mixed
linealy at the ECG eledrodes; 2) Time delays in signal
transmisson are negligible; 3) There gpea to be fewer
sources than mixtures; and 4) Sources have non-Gaussan
voltage distributions. However, movements of the heat
such as contradion of the dambers during beding
violates the ICA assumption of spatial stationarity of the

A color version of thisarticle can be downloaded from http://www.cnl.salk.edu/~jungd/icahtml



sources. The presence of moving waves of eledricd
adivity aadossthe heat also means that the adivity of a
singe dcamber may be taken for multiple sources by
ICA.

Another asuumption of the ICA model, the
independence between sources, has aso lead to some
confusion. For ICA, independence only refers to ladk of
dependency between coincident source adivations, and
not to posshle time-delay dependencies. Artifads, such
as those introduced by small movements of the dedricd
contads $ould be reasonably independent of signals
originating from the heat. Signals generated by different
parts of the heat during the cadiac cycle can aso be
separated by ICA if they are generated at different times
or if there is jitter in the relative timing of overlapping
signal sources.

Here, we illustrate the ICA decompaosition of
meternal and fetal ECGs remrded simultaneously from
cutaneous eledrodes placel on the mother's abdomen
and chest (De Moor, 1997 Cardoso, 1998. Each ECG
eledrode was sampled for 125 semnds at 200 Hz
(Figure 1A, left panel). In channels 1-5, measured from
the @daminal region, the fetal ECG is barely visible.
Channels 6-8 were recorded from the mother’'s chest
region; here the fetal signals are not visible.

These ECG data were treaed as observed mixtures of
independent ECG sources. Figure 1A (right panel) shows
the dght independent components derived by the
extended infomax ICA agorithm (Lee & a., 199%).
Components 1-4 evidently acount for maternal ECG
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with a bea rate of ~72, whereas components 6 and 8
acount for the fetal ECG beding at ~106min. The
sources of Components 5 and 7 are unkrmown. To
examine the dynamics of ead component, we first
aligned the data to pe&ks in the mother’s heatbeas, then
averaged the data and overlaid the projedions of
components 1-4 onto the averaged ECG at eledrode 8
(Figure 1B, left pandl). It is thought that the P wave in the
ECG corresponds to the depdarizéion of the dria, and
the QRS complex to the repodarizaion of atria
overlapped with the depolarization of the ventricles. ICA
decomposed the maternal ECG into four components
presumably acounting for distinct but overlapping
periods of adivation of atria axd ventricles. The
decompasition might potentially be useful to separate the
depdarizaion/repolarizaion of the ventricles and atria.
However, further experiments will be necessry to
interpret the ICA decmmposition physiologicdly. Figure
1B (right panel) shows the averaged peék-aligned fetal
ECG at eledrode 2 plus the projedions of components 6
and 8 Since the averaged fetal ECG has a very poa
signal-to-noise ratio relative to daminant maternal ECG,
averaging faled to eliminate vestiges of the large
maternal ECG signals. The projedions of components 6
and 8 however, show no sign of this interference
indicaing that their adivity acounted mainly for the
fetal ECG. The aility of ICA to separate small vital
signals from dominant cardiac signals may have future
applicationsin the diagnosis of heat disease.
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3. AVERAGED ERPs

Event-Related Potentials (ERPs) are time series of
voltages in the ongoing eledroencephalogram (EEG) that
are time- and phase-locked to a set of similar experimental
event. ERP data are usualy averaged prior to anaysis to
increase their signal/noise relative to non-phase locked
EEG adivity including non-neural artifads. Many studies
employ ERP pe& measures to test clinicd or
developmental hypotheses. However, ERPs cannot be
easlly decomposed into functionally distinct components,
becaise their time curses and scdp projedions generally
overlap. ICA can be used to effedively decompose
multiple overlapping components from sets of related
ERPs (Makeig et al, 1996 1997 1999 Junget a., 1998.

ICA assumptions. Four main assumptions underlie ICA
demmposition of EEG (or MEG) time series: (1) Signal
conduction times are equal, and summation of currents at
the scdp sensors is linea, both reasonable asumptions
for currents caried to the scdp eledrodes by volume
conduction at EEG frequencies, or for superposition of
magnetic fields at SQUID sensors (Nunez 1981). (2)
Spatial projedions of components are fixed aaoss time
and conditions. (3) Source ativations are temporaly
independent of one another aaoss the input data. (4)
Statisticd distributions of the mmponent adivation values
are not Gausgan.

Soatial  stationarity. Spatial stationarity of the
component scdp maps, asaumed in ICA, is compatible
with the observation made in large numbers of functional
imaging reports that performance of particular tasks
increases blood flow within small (=cm®), discrete brain
regions (Friston, 1998. ERP sources refleding task-
related information processng are generaly assumed to
sum adivity from spatially stationary generators, although
stationarity may not apply to some spontaneously
generated EEG phenomena such as gprealing depresson
or sleg spindles (McKeown et al., in presg. Our results
to date suggest that most EEG oscill ations, including
alpha rhythms, can be better modeled as composed of
temporaly independent islands of coherent corticd
adivity, rather than as traveling waves (see Makeig et d.,
this volume).

Temporal independence. ICA assumes that sources of
the EEG must be temporaly independent. In the cae of
the aeraged ERP brain components have temporally
overlapping adive periods. Independence of ERP feaures
may be maximized by, first, sufficiently and
systematicdly varying the experimental stimulus and task
conditions, and, next, training the dgorithm on the
concaenated coll edion of resulting event-related response
averages. Fortunately, the first goa of experimental
design, to attain independent control of the relevant output

variables, is compatible with the ICA requirement that the
adivations of the relevant data mponents be
independent. Thus, for example, the subjed group-mean
ERP data we analyzed successully using ICA (Fig. 6,
from Makeig et al., 1999 consisted o colledions of 25to
75 lsec aerages from different task and/or stimulus
conditions, eatc summing a relatively large number of
singe trids (250-7000. Unfortunately, however,
independent control of temporaly overlapping ERP
components may be difficult or impossble to adieve.
Simply varying stimuli and tasks does not guarantee that
all the spatiotemporally overlapping response components
appeaing in the averaged responses are independently
adivated in the ensemble of input data. Thus, the
suitability of ICA for decomposition of small sets of ERP
averages cannot be a@umed, and such decmpositions
must be eamined very carefully using convergent
behavioral or physiologicd evidence before acceting the
functional independence of the derived components. ERP
components, even those derived by ICA, may adualy
represent sums of event-related phase and amplitude
perturbations in components of the ongoing EEG, an idea
we ae now exploring in detail (cf. Makeig et a., this
volume).

Dependence on source distribution. Mixtures that
appea normally distributed may be the sum of sources
that themselves are not Gausdan. In theory, multiple
Gaussan processes cannot be separated by ICA, athough
in pradice een small deviations from normality can
suffice to give good results. Also, not al 1CA agorithms
are cgable of unmixing independent components with
sub-Gaussan  (negative-kurtosis)  distributions.  For
example, the infomax ICA algorithm using the logistic
nonlineaiity is biased towards finding super-Gaussan
(sparsely-adivated) independent components (i.e., sources
with positive kurtosis). Super-Gaussan sources, which are
relatively ‘inadive’ more often than the best-fitting
Gausdan process reaur in speed and many other natural
sounds and visual images (Bell and Sejnowski, 1996
1997. The aaumption of super-Gaussan source
distributions is compatible with the physiologicdly
plausible assumption that an averaged ERP is compaosed
of one or more overlapping series of relatively brief
adivations within spatially fixed brain areas performing
Separable stages of stimulus information processng.
Nonetheless sub-Gaussan independent components have
been demonstrated in EEG data (Jung et al., 1998,
including line noise, sensor noise and low frequency
adivity. In pradice, however, sub-Gausgan components
appea rarely in ERPs or in spontaneous EEG. Possbly,
the super-Gausdan statistics of EEG adivity may be
statisticdly compatible with maximum flexibility of brain
information processng.
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Figure 2. ICA identifies gatialy periods of fixed scdp
topagraphy in sets of averaged event-related brain
potentials. Decompasition of 30 1s, 31-channel ERPs
averaging target stimulus responses from 5 subjeds
produced two large @mponents of the late positive
response (here labeled P3b and Pmp). The top panels $ow
the grand mean target response & two scdp channels, Fz
and Pz (thick traces), and the projedions of the two major
ICA components, P3b and Pmp, to the same channels (thin
traces). The ceitral panel shows a scater plot of 10
averaged target responses at the two eledrodes (averages of
short- and long-latency response trials). The data contained
two strongly radial (and therefore spatially fixed) feaures.
The dashed lines (middle panel) show the diredions
asociated with components P3b and Pmp in these data, as
determined by the relative projedion strengths of ead
component to these two scdp channels (black dots on
cartoon heads). The degreeof data entropy attained by ICA
training is indicaed by the (center right) plot insert, which
shows the (31-channel) scatter-plotted data &ter nonlinea
transformation (by tanh()) and rotation to the two
component axes (from Makeig et al., 1999 by permisgon).

4. SINGLE-TRIAL ERPs

Singe-trial event-related pdential data are usualy
averaged prior to analysis. However, response averaging
ignores the fad that response adivity may vary widely
between trials in both time murse and scdp distribution.
This temporal and spatial variability may in fad reflea
changes in subjea performance or in subjed state
(posshly linked to attention, arousal, task strategy, or
other fadors). Thus conventional averaging methods may

not be suitable for investigating brain dynamics arising
from intermittent changes in subjed state and/or from
complex interadions between task events. Analysis of
single event-related trial epochs may potentially reved
more information about event-related brain dynamics
than simple response averaging, but faces three signal
procesing challenges: (1) difficulties in identifying and
removing artifads asociated with blinks, eye-
movements and muscle noise, which are a serious
problem for EEG interpretation and analysis; (2) poa
signal-to-noise ratio arising from the fad that non-phase
locked badkground EEG adivities often are larger than
phase-locked response @mponents; (3) trial-to-tria
variability in latencies and amplitudes of both event-
related responses and endogenous EEG components.

Recently, Jung Makeig and colleagues (1998 1999
have developed a set of promising analysis and
visuali zation todls based on ICA for multichannel single-
trial EEG reaords that may overcome these problems.
These tools have been used to analyze data from a visual
seledive atention experiment on 28 control subjeds plus
22 neurological patients whose EEG data, recorded at 29
scdp and 2 EOG sites, were often heavily contaminated
with blink and other eye-movement artifads.

Participating subjeds, fourteen males and nine
females, were right-handed with normal or correded to
normal vision. During 76-second trial blocks, subjeds
were instructed to attend to one of five sguares
continuously displayed on a badk badkground 0.8 cm
above a cetrally located fixation point The (1.6x1.6cm)
squares were positioned horizontally at angles of 0°,
+2.7° and £5.5° in the visua field 2° above from the
point of fixation. Four sguares were outlined in blue
while one, marking the dtended location, was outlined in
green. The locaion of the dtended locaion was
counterbalanced aaosstrial blocks.

To dsplay the wlledion of single-trial EEG records,
we use areceantly developed visualization tool, the © ERP
image' , (Jung et al, 1999 to illustrate inter-trial
variability. Figure 3A shows al 641 singe-trial ERP
epochs remrded from an autistic subjed time-locked to
onsets of target stimuli (left vertical line). Singe-trial
event-related responses at the vertex (Cz) and parietal
(Pz) sites are plotted as color-coded horizontal traces (see
color bar) sorted by the subjed’ geadion time in ead
trial (thick black line). The ERP average of these trialsis
plotted below the ERP image. ICA, applied to al these
31-channel EEG records, separated artifacual, stimulus-
locked, response-locked, stimulus-related phase-resetting,
response-blocking mu and non-event related badkground
EEG adivities into different components (Figure 3B),
alowing: (1) removal of pervasive artifads from single-
trial EEG reards, making possble aalysis of highly
contaminated EEG records from clinicd populations
(Jung et a, 199%; Jung et a., 2000, (2) identification
and segregation of stimulus- and response-locked EEG



components, (3) realignment of the time courses of
response-locked components to prevent temporal
smearing in the average, (4) investigation of temporal
and spatial variability between trials, and @ (5)
separation of  gpatially-overlapping EEG  activities
that may show a variety of distinct relationships to task
events. The ICA-based analysis and visualization tools
appear to enhance the amount and quality of information
in event- or response-related brain signals that can be
extracted from ERP data. ICA thus may help researchers
to take fuller advantage of what until now has been an
only partially-realized strength of ERP paradigms--the
ability to examine systematic relationships between
single trials within subjects (Jung et al., 1999b;
Kobayashi et al. 1999; Makeig et al., in press-b).
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Although these results show promise and have aready
given us new insights into brain function, the application
of ICA to single-trial unaverged ERP data must be
interpreted with caution. In general, unlike the averaged
ERP decomposition, the effective number of independent
components contributing to scalp EEG is unknown and
most likely more than the number of EEG electrodes (i.e.,
the data are over-complete). In our results, ICA appears
to extract components consistently across hundreds of
responses, and to identify components falling into
between-subject clusters recognizable by their spatial and
temporal patterns as well as by their time-domain (ERP)
and frequency-domain (event-related spectral
perturbation) reactivities (Makeig et a., this volume).
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Figure 3: ERP-image plots of target response data from a visual selective attention experiment and various
independent component categories. (A) Single-trial ERPs recorded at a central (Cz) and a parietal electrode (Pz) from
an autistic subject and time-locked to onsets of visual target stimuli (left thin vertical line) with superimposed subject
response times (RT). (B) Single-trial activations of sample independent components accounting for (clockwise) eye
blink artifacts, stimulus-locked and response-locked ERP components, oscillatory non-phase locked, stimulus phase-

reset apha, and response-blocked mu activities.



5. EVENT-RELATED ‘ALPHA RINGING’

EEG data were recorded from a subjed performing the
seledive dtention EEG experiment described ealier. Fig.
4 shows the time course of adivation of one independent
component whose adivity spedrum had a strong pe& in
the dpharange (10 Hz). Its map (lower right) can be well
approximated by a singe euivaent dipoe model,
sugeesting that its ource might resemble asmall patch of
cortex in left medial ocdpital cortex.

In this ‘ERP image’ view, the time wurse of adivation
of this component in over 500single trials time locked to
the presentation of a target stimulus are shown. Here the
trials have been sorted not in order of response time (asin
Fig. 3), but rather in order of 10-Hz phase & stimulus
onset (time 0). The phase sorting (above) produces an
apparent autocorrelation of the signals, suggesting that
this component produced roughy 1-sec dpha. Note,
however, that the slope of the maximum-phase lines
(dark stripes) increeses to nea- verticd nea 500 ms
(first tick) following stimulus presentation. This change
in slope represents a systematic phase reset of the dpha

component following stimulation. The verticdly time-
adigned phase maximum from 200 to 700 ms after
stimulus onset produces the gpeaance of increased 10
Hz adivity in the portion of the ERP acmunted for by
this component (upper trace). However, (as the middle
trace shows) mean power at 10 Hz in the single trials
does not increese aove its baseline during the period o
phase reset. Insteal, (as the lower trace shows) the phase
resetting of the cmponent process by the stimulus,
below bodstrap significance level (horizontal thin line)
before stimulus onset, becomes sgnificant about 200 ms
after stimulus onset, and remains © for over 500ms.

Here ICA dlows the adua event-related EEG
dynamics producing the observed "apha-ringing' in the
averaged evoked response to he acerately modeled,
whereas measuring the average evoked response could
suggest a quite different (and wrong) conclusion. As
Makeig et a. (this volume) show, ICA identifies svera
clusters of independent EEG apha @mponents.
Typicdly, severa of these combine to form a subjed’s
“apharhythm”.
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6. ALERTNESSMONITORING USING AN ICA
MIXTURE MODEL

EEG and behavioral data were collected to develop a
method of objectively monitoring the alertness of
operators listening for weak signals in background noise
(Makeig & Inlow, 1993; Jung et a., 1997). Subjects were
instructed to keep their eyes closed and to push a button
whenever they detected an above-threshold auditory
target stimulus. Auditory targets were 350-ms increases
in the intensity of a 62-dB white noise background, 6 dB
above their threshold of detectability, presented at
random time intervals at a mean rate of 10/min, and
superimposed on a continuous 39-Hz click train evoking
a 39-Hz steady-state response. Short, and task-irrelevant
probe tones of two frequencies (568 and 1098 Hz) were
interspersed between the target noise bursts at 2-4 s
intervals. EEG was collected from thirteen electrodes
located at sites of the International 10-20 System,
referred to the right mastoid, at a sampling rate of 312.5
Hz. A bipolar diagonal electrooculogram (EOG) channel
was also recorded. Hits were defined as targets responded
to within a 100-3000 ms post-stimulus window. Lapses
were targets not responded to (because of drowsiness or
loss of vigilance). A continuous performance measure,
local error rate, was computed by convolving the
irregularly-sampled performance index time series
(Hit=O/Lapse=1) with a 95-sec smoothing window
advanced through the datain 1.64 sec steps.

The ICA mixture model can be used for unsupervised
classification and tracking non-stationary signals (Lee et
al., 1999c, see Appendix). When this model was applied
to the 14-channel, 28-min EEG data, the model
segregated the data into different states or classes. This
automatic switching alowed the model to model the
spatial independent component structure in each class.

Alertness Monitoring using an ICA Mixture Model

Figure 5 demonstrates an applications of the ICA
mixture model to assess the EEG correlates of changesin
dynamic brain state. The thick solid trace shows changes
in the subject’'s local detection error rate during the
session (e.g., at mins 3-8, error rate increased from 0O to
100% as the subject became drowsy). The bottom traces
shows how each 10-sec EEG segment was modeled by
different classes of the ICA mixture model. Class 2
evidently accounted for the EEG data during periods in
which the subject became drowsy. Class 1 accounted for
the alert EEG data, except for some epochs (marked by
small x’s on the bottom trace) segregated into ICA Class
3 accounting mainly for eye-movement contamination or
out-of-bounds data. ICA Class 2 thus minimizes mutual
information in drowsy-EEG, while Class 1 minimizes
mutual information in alert-EEG.

When the Class 1 unmixing matrix was used to filter
EEG data from the entire session, the ICA-filtered
outputs became more correlated during periods in which
the subject became drowsy (i.e, the likelihood of
modeling these EEG epochs by Class 1 was low).
Conversely, filtering data from the whole session using
the Class 2 ICA weight matrix accounting for the drowsy
portion of the session produced component activations
that were more correlated during the alert portions of the
session. Presumably, these changes in residual correlation
between ICA output channels reflect changes in the
dynamics and topographic structure of the EEG signals
between alert and drowsy brain states, and could be used
to predict the level of vigilance of the subject. Figure 5
shows that the difference between the log likelihood
measures of these two ICA weight matrices could
estimate very accurately changes in the behavioraly-
defined level of alertness throughout the session. The
regressed difference (dot-dashed) was highly correlated
with actual error rate (R=0.95).

Figure 5. Alertness monitoring using an ICA
mixture model. Upper panel: Actual and estimated
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the subject performed a continuous auditory
detection task. The three ICA weight matrixes
were derived by ICA mixture model. The actua
smoothed error rate is shown as a continuous solid
line and the scaled log likelihood difference
between Classes 1 & 2 is shown as a dot-dashed
line (see text). Lower panel: Ten-second EEG
epochs were segmented into three ICA Classes:
Class 1 accounted for EEG epochs during which the
subject’'s performance was nearly perfect (i.e.,
alert), while Class 2 accounted for EEG epochs
during the poor-performance (drowsy) portion of
the session. Class 3 (marked by x’s) modeled EEG
epochs heavily contaminated by blinks or eye-
movement.
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7. FUNCTIONAL MAGNETIC RESONANCE
IMAGING (fMRI)

The analysis of fMRI brain data is a challenging
enterprise, as the fMRI signals have varied, unpredictable
time courses that represent the summation of signals from
hemodynamic changes as a result of neural activity, from
motion and machine artifacts, and from physiological
cardiac and respiratory pulsations, as well as possibly
other signals. The relative contribution and exact form
of each of these components is largely unknown,
suggesting a role for blind separation methods, if the data
can be placed in a form consistent with these models
(McKeown, Jung et al. 1998; McKeown, Makeig et al.
1998; McKeown and Sejnowski 1998; McKeown 2000).
The assumptions of ICA apply to fMRI datain a different
way than to other time series analysis. Here the principal
of brain modularity suggests that, as different brain
regions perform distinct functions, these time courses of
activity should be separable (though not necessarily
independent). This, plus the relatively high 3-D spatial
resolution of fMRI, allows ICA to identify spatially
independent regions with distinguishable time courses.
However, the principle of spatial independence of active
brain areas is not absolute, and therefore the functional
significance of independent fMRI components must also
be validated by convergent physiological or behavioral
evidence.

General Linear Model (GLM). Traditional methods
of fMRI analysis (Friston 1996) are based on variants of
the General Linear Moddl, i.e.,

X=GB+¢ )

Where X is an n by v row mean-zero data matrix with n
being the number of time points in the experiment and v
being the total number of voxels in all dices, G is a
specified n by p design matrix containing the time
courses of al p factors hypothesized to modulate the
BOLD signal, including the behavioral manipulations of
the fMRI experiment, B is a p by v matrix of parameters
to be estimated, and € is a matrix of noise or residual
errors typicaly assumed to be independent, zero-mean
and Gaussian distributed, i.e. N(0,09). Once G is
specified, standard regression techniques can be used to
provide a least squares estimate for the parameters in 3.
The statistical significance of these parameters can be
considered to constitute spatial maps (Friston 1996), one
for each row in B, which correspond to the time courses
specified in the columns of the design matrix. GLM
assumes: (1) the design matrix is known without error,
(2) time courses are white; (3) the B's follow a Gaussian
distribution; and (4) the residuals are well-modeled by
Gaussian noise.

ICA Applied to fMRI Data. Using ICA, we can
calculate an unmixing matrix, W, to calculate spatially
independent components,

C = WX, 2
where again, X is the n by v row mean-zero data matrix
with n being the number of time points in the experiment
and v being the total number of voxels, W isan n by n
unmixing matrix, and C isan n by v matrix of n spatially
independent components (sl Cs).

If W isinvertible, we may write,

X =w’C (3)
An attractive interpretation of egn (3) is that the columns
of W' represent basis waveforms that can used to
construct the observed voxel time courses described in
the columns of X. These basis waveforms can be
considered fundamental, as the projection on one basis
waveform is independent of the projection on another
(i.e., therows of C are maximally independent).

The similarity between ICA and the GLM can be seen
by comparing egns (1) and (3). Starting with equation (3)
and performing the initial ssimple notation substitutions,
W? . GandC - B, wehave

X =GB 4)
which is equivalent to egn (1) without the Gaussian error
term. Note however the important teleological

differences between equations (1) and (4): when
regression equation is used (egn 1), the design matrix G
is specified by the examiner, while in egn. (4) the matrix
G is calculated from the data by the ICA agorithm, aso
determines B egn. 2. That is, ICA does not reply on a
priori knowledge about the time courses of bran
activation and noise sources, and make only weak
assumptions about their probability distributions.

A Case Study. Figure 6 shows the results of applying
ICA to a fMRI data set. The fMRI data were acquired
when a subject performed 15-sec blocks of visually-cued
or self-paced right wrist supination/pronation alternating
with 15-sec rest blocks. ICA detected a spatially-
independent component that was active during either
types of motor activity but not during rest (Figure 6B).
Figure 6C shows a similar fMRI experiment in which the
subject was asked to supinate/pronate both wrists
simultaneously. Here ICA detected a component more
active during self-paced movements than either visually-
cued or rest periods. Its midline, frontal polar location
(depicted) is consistent with animal studies showing
relative activation in this area during self-paced but not
during visually-cued tasks.

Future Direction. In many respects, use of GLM and ICA
are complimentary (Friston, 1998; McKeown &
Sejnowski, 1998). The advantage of the GLM is that it
adlows the experimenter to check the dtatistical
significance of activation corresponding to the



experimental  hypothesis (given several dtatistical
assumptions). The disadvantages of the GLM are related
to the fact that the assumptions outlined above may not
be a far representation of true fMRI data. Also,
dynamic, distributed patterns of brain activity (Kelso,
Fuchs et al. 1998) may not be well modeled by a
regression framework that considers each voxel to be a
discrete, independent unit.

ICA, on the other hand, has proved to be a powerful
method for detecting task-related activations, including
unanticipated activations (McKeown, Jung et al. 1998;
McKeown, Makeig et al. 1998; McKeown and Sejnowski
1998; McKeown, Humphries et al. 1999; McKeown
2000) that could not be detected by standard hypothesis
driven approaches. This may expand the possible types
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of fMRI experiments that can be performed and
meaningfully interpreted.

A possible objection to the use of ICA, however, is
that it does not provide an experimenter with a
significance estimate for each activation, which may
decrease experimenter’s confidence in interpreting the
results. McKeown has recently proposed a method that
uses ICA to characterize the data, and then enables the
experimenter to test hypotheses in the context of this
data-defined characterization (McKeown 2000) by
defining a metric that enables a qualitative assessment of
the relative mismatch between hypothesis and data. By
placing ICA in a regression framework, it is possible to
combine some of the benefits of ICA with the hypothesis-
testing approach of the GLM (McKeown 2000).

Figure 6. (A) AnfMRI experiment was
performed in which the subject was
instructed to perform 15-sec blocks of
right wrist supination/pronation
alertnating with rest blocks. The periods
of movement where either self-paced or
visually-cued by a movie of a hand
supinating and pronating. (B) ICA

Ny Self-paced
movement

¥ Visually-cued

= Rest
movement

analysis of the experiment detected a
spatially-independent component  that
was active during both types of motor
periods but not during rest. The spatial
distribution  of  this  component
(thresholded, z>=2.0) was in the
contralateral primary motor area and
ipsilateral cerebellum. (the radiographic
convention is used, with the right side of
the image corresponding to the left side
of the brain and viceversa) (from
McKeown, et a. manuscript in
preparation). (C) A similar fMRI
experiment was performed, except the
subject was asked to supinate/pronate
both wrists simultaneously. ICA
detected a component that appeared to

~} Self-paced
"~ movement

movement

{z, Visually-cued

be more active during self-paced
movements than either visually-cued or
rest periods. The midline region
depicted (after thresholding at z>=2.0) is
consistent with animal studies showing
relative activation of these areas during
self-paced but not visualy-cued tasks.
(eg. Kemadi e a. (1997).
Somatosensory & Motor  Research
14(4): 268-80.)

= Rest



8. DISCUSSION

Biomedical signals are a rich source of information
about physiological processes, but they are often
contaminated with artifacts and noise and are typicaly
mixed in unknown combinations at every available
sensor. As we have attempted to show here, ICA holds
great promise for blindly separating artifacts from
relevant signals and for further decomposing the mixed
signals into subcomponents that may index the activity
of functionally distinct generators. In addition to the
analysis of EEG signals, ICA has also been applied to
magnetoencephalographic (MEG) recordings (Vigario
and Oja 1999), which carry signals from brain sources
and are in part complementary to EEG signals. ICA has
also been used to analyze data from Positron Emission
Tomography (PET), a method for following changes in
blood flow in the brain on slower time scales following
the injection of radioactive isotopes into the
bloodstream (Petersen et a., 2000). Other interesting
applications of ICA are to the electrocorticogram
(EcoG), direct measurements of electrical activity from
the surface of the cortex (Makeig et a., in press-a), and
to optical recordings of electrical activity from the
surface of the cortex using voltage-sensitive dyes
(Schoener et a., 1999). First clinica research
applications of ICA include the analysis of EEG
recordings during epileptic seizures (McKeown et @, in
press-a).

Although these results show promise and have
already given us new insights into brain function, the
application of ICA to biomedical signals is till in its
infancy. Its results must always be validated using other
more direct or convergent measures before we can have
confidence in their interpretation. Toward this goal, we
have analyzed simulated EEG recordings generated
from a head model and dipole sources that include
intrinsic noise and sensor noise (Makeig et al. in press
a). This has given us some understanding of the
conditions when ICA will fail to separate correlated
sources of EEG signals. Another approach to validating
ICA is to record simultaneously several types of
signals, such as EEG and fMRI recordings, which
should provide good spatial resolution (fMRI) and
temporal resolution (EEG) (Jung, et a. 1999a). In sum,
ICA has proven to be a valuable new analytic tool that
will doubtless be applied fruitfully to many types of
biomedical data.

9. APPENDIX: ICA MIXTURE MODEL

The extended version (Lee et a, 1999a) of the infomax
ICA agorithm (Bell and Sejnowski, 1995) was used for
al of the examples of biomedical signal processing
summarized here. Comparisons with other methods can
be found in the original papers where these results first

appeared. A Matlab ICA toolbox can be downloaded
from http://mww.cnl.salk.edu/~scott/ica.html.

In a mixture model (Duda & Hart, 1973), the
observed data can be categorized into several mutually
exclusive classes. When the data in each class are
modeled as multivariate Gaussian, it is cadled a
Gaussian mixture model. We generalize this by
assuming the data in each class are generated by a linear
combination of independent, non-Gaussian sources as
assumed by ICA. We call this model an ICA mixture
model. This alows modeling of classes with non-
Gaussian dtructure, e.g., platykurtic or leptokurtic
probability density functions. The agorithm for
learning the parameters of the model uses gradient
ascent to maximize the log likelihood function. In
previous applications this approach showed improved
performance in data classification problems (Lee et al.,
1999a), performed blind signal separation in non-
stationary environments (Lee et a., 2000), and learned
efficient codes for representing different types of
images (Lee et al. 1999Db).

Assume that the data are drawn independently and
generated by a mixture density model (Duda & Hart,
1973). The likelihood of the data is given by the joint
density:

T

p(X|0) = D p(x, |©) X ={Xy, X500, X1}

The mixture density is

IO(X.|@)=§!p(xt|0k,9k)p(ck) 0={6,.0,,....6,}

where ©® are the unknown parameters for each
component densities. C denotes the dass and it is
asaumed that the number of classes K, are known in
advance Asame that the component densities are non-
Gausdan and the data within ead class are described
by:

X, =A,S +b,

where A isa N x M scdar matrix and b is the bias
vedor. The A matrix is cdled the mixing matrix in
standard ICA. However, we refer to A as the basis
matrix to dstinguish this from the word mixture in the
mixture model. The vedor sis cdled the source vedor
and these ae dso the wmefficients for ead basis
function. It is assumed that the individual sources
within ead class are mutualy independent aaoss a
data ensemble. For simplicity, we mnsider the cae
where the number of sources is equal to the number of
mixtures. Figure A.1 shows a simple example of a
dataset describable by an ICA mixture model. Each
classwas generated using a different A and b. Class‘o’
was generated by two uniformly distributed sources,



whereas class ‘+ was generated by two Lapladan
distributed sources. The task is to classfy the unlabeled
data points and to determine the parameters for eat
class and the probability of ead class for ead data
point.

Figure 7 A simple example for clasdfying an ICA
mixture model. There ae two classs, ‘+' and ‘0" . Each
classwas generated by two independent variables with
separate bias terms and basis vedors. Class ‘0" was
generated by two uniformly distributed sources, as
indicated next to the data dass Class‘+" was geerated
by two Lapladan distributed sources with a sharp pegk
at the bias and with heavy tails. The inset graphs $ow
the distributions of the source variables for ead basis
vedor.

An iterative learning algorithm that performs gradient
ascent on the total likelihood d the data has the

foll owing steps.
e Compute the log-likelihood d the data for eat
class

log p(x, |C,.8, )= log p(s,) ~ log(detA, )
e Compute the probability for ead classgiven the
datavedor:

o(C, 1,,0) = P& 1. C)P(C.)

Z p(xt |6, rck)p(ck)

e Adapt the basis functions and the bias terms for
ead class The basis functions are alapted using
gradient ascent:

a d
log p(x, |©)= p(C, |x,,0)-—log p(x, |6,.C,)

0A 0A
e This gradient can be gproximated using an ICA
algorithm, as $iown below. The gradient can also
be summed over multiple data points. An
approximate update rule was used for the bias
terms:;

AA, O

4

Xy p(Xt |9kvck)

— (=
b, =2

z p(Xt |9k'Ck)
=

The gradient of the log of the component density can
be gproximated using a standard ICA model. There
are several methods for adapting the basis functions in
the ICA model (Comon, 1994 Bell & Sejnowski, 1995
Cardoso & Laheld, 1996 Hyvarinen & Oja, 1997, Lee
et d., 199%). A main difference between the ICA
algorithms isin the use of higher order statistics such as
cumulants versus pre-defined density models. Here, we
are interested in iteratively adapting the dass
parameters and modeling a wider range of distributions.
The etended infomax ICA leaning rule is able to
blindly separate unknown sources with sub- and super-
Gausdan distributions. Distributions that are sharply
peaked around the mean and have heavy tails are cdled
super-Gaussans  (leptokurtic  distributions)  and
distributions with flatter pe&k such as a uniform
distribution is cdled sub-Gaussan (platykurtic
distribution). A complete derivation of the leaning
algorithm for the ICA mixture model has been reported
in (Lee e¢a., 199%).
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