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Abstract- Electrical activity in the human brain can be monitored using electrodes placed on the  
scalp. Activity representations using voltage measurements is called electrical source image (ESI).  
ESIs are obtained by comparing the measurements with the solutions obtained using a numerical  
model  of the head.  Spheroid approximates the shape of  a human head and can be used for that  
purpose. In this study, the analytical formulation for the solution of the potential distribution due to a  
current dipole in a uniformly conductive spheroidal head model is implemented.  The accuracy in  
solutions is tested with the results obtained using Boundary Element Method (BEM) with a dense  
mesh. The solutions of analytical and numerical potential fields are compared as the depth of the  
dipole inside the spheroid is increased. The comparison is done for two types of spheroids: prolate  
spheroid (egg-shape) and oblate spheroid (discus-shape). It is observed that for prolate spheroid the  
error is about 1% when the dipole is not located close to boundary and for the oblate spheroid the  
error is calculated as approximately 3%. It is concluded that spheroid head models can be used in  
electro-magnetic source imaging. 
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1. INTRODUCTION

Representations of the active cell populations on the cortical surface via electrical measurements is 
known  as  electrical  source  images  (ESIs)  of  the  human  brain.  Finding  electrical  sources  from 
electrical measurements is the  inverse problem. The  forward problem of ESI is the solution of the 
potential distribution on the head surface for a known source distribution. The inverse problem is 
based on the comparison of the measurements  with the calculated fields. Therefore, to be able to 
obtain reliable solutions of the inverse problem, the forward problem must be solved accurately [1,2]. 
For  realistic  head  models,  however,  analytical  solutions  do  not  exist.  Therefore  complicated 
numerical methods such as the Boundary Element Method (BEM) and the Finite Element method 
(FEM) have to be employed to solve the potential distribution [2,3].

In  general,  spherical  head  models  are  used  to  obtain  a  source  estimate  without  requiring  high 
computing resources. However, analytical solutions are also available for head models with special 
geometries (concentric  spheres,  eccentric spheres,  spheroid,  etc.)  [4-12].  Concentric  and eccentric 
spheres models include more than one type of tissue, thus better than a uniform sphere. However, the 
solution time is higher compared to the solution using a spherical head model.  A spheroidal model, 
on the other hand, has uniform conductivity and has the computational advantages of the spherical 
model while representing the head geometry better than a sphere.  The analytical potential formulation 
of spheroid is given in [13,14]. The aim of this study is to implement this analytical formulation and 
test the accuracy in solutions. This will allow us to use the spheroidal head models for future inverse 
problem studies.  The accuracy of the analytical  solutions is tested with the numerical solutions of 
BEM that gives accurate results for a dense mesh [15].   



In this study, first the analytical formulations are given for the potential field for prolate and oblate 
spheroidal geometries.  The results include the comparison of the analytical and numerical solutions. 

2. ANALYTICAL CALCULATION OF THE POTENTIAL FIELD

The potential  distribution  due  to  a  current  dipole  can  be formulated for  two types  of  spheroids, 
namely,  prolate  and  oblate  spheroids  [13,14].  In  this  section,  these  formulations  will  be 
summarized.

2.1 Prolate Spheroid

Figure 1 shows the coordinate system for a prolate spheroid. The prolate spheroidal coordinates (ξ, η, 
ϕ) can be related to the rectangular coordinates (x, y, z) by
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where the prolate spheroidal coordinates are in the ranges -1≤ ξ ≤1, 1≤η, 0≤ϕ<2π and C is a constant.
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Figure 1 : Rectangular and prolate spheroidal coordinates in the case of a prolate spheroid volume conductor.

 The potential field can then be calculated using the following formula [13,14]:
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Where 
0ξP , 

0ηP , 
0ϕP  are the current dipole moments along ξ, η, ϕ directions. ξ0, η0, ϕ0 refer to the 

direction of the dipole and ξ, η and ϕ refer to the field points. The metric coefficients are
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where k
lP  is the legendre polynomial of order l [16].

1,0

1,
2

)1()()1( 0
2

0

≠=

=+−=− ⊗

k

kllP k
l ξξ

(5)

If ξ0=1 or η0=1, then the following relations must be used in order to perform the calculations.
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2.2 Oblate Sheroid

Figure 2 shows the coordinate system for an oblate spheroid. The oblate spheroidal coordinates (ξ,, ζ, 
ϕ) can be related to the rectangular coordinates (x, y, z) by
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where the oblate spheroidal coordinates are in the ranges -1≤ ξ ≤1, 0≤ζ, 0≤ϕ<2π and C is a constant.
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Figure 2 : Rectangular and oblate spheroidal coordinates in the case of an oblate spheroid volume conductor.



 The potential field can be calculated as follows
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Where 
0ξP , 

0ζP , 
0ϕP  are the current dipole moments along ξ, ζ, ϕ directions. ξ0, ζ0, ϕ0  refer to the 

direction of the dipole and ξ, ζ and ϕ refer to the field points. The metric coefficients are
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The values of the associated Legendre polynomials are calculated using MATLAB’s functions and for 
complex  values  the  polynomials  are  calculated  using  the  recurrence  relationships  which  are  in 
agreement with the values available in standart tables [16].

3. NUMERICAL CALCULATION OF THE POTENTIAL FIELD USING BEM

In BEM, the entire volume (i.e., torso or human head) is subdivided into compartments with constant 
material  properties. In bioelectric studies, material  property is the electrical conductivity of tissues 
and  it  is  assumed isotropic  in  BEM formulations.  BEM transforms the  differential  equation  that 
represents the electric  potential  due to an impressed current  source in a conductive  body into an 
integral equation over the boundary surfaces which separate regions with different conductivities. The 
surface integrals are calculated numerically by dividing the surface into elements.  In the literature 
different kinds of elements and methods are used to evaluate the surface integrals [2]. This study uses 
the isoparametric elements proposed by Tanzer and Gençer [1,2,3]. Using isoparametric elements in 
the formulations enables us to express both the global coordinates and potentials on an element using 
the same interpolation (shape) functions. Each integration on a surface element is written as a linear 
combination of unknown node potentials. If the potential  φ is to be calculated at  M nodes, then in 
matrix notation, it is possible to obtain the following matrix equation:

Φ+=Φ Cg (10) 

where  Φ  is  an  1×M  vector  of  node  potentials,  C is  an  MM × matrix  whose  elements  are 
determined  by  the  geometry  and  electrical  conductivity  information,  and  g is  an  1×M  vector 
representing the contribution of the primary sources.  The details  of  the BEM formulation can be 
found in [1,2,3].

Figure 3 shows prolate and oblate spheroidal meshes with 512 quadratic elements.
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Figure 3 : The prolate and oblate spheroidal meshes with 512 elements and 1026 nodes (a) prolate spheroid, (b) 
oblate spheroid.

4. RESULTS

The comparison of analytical potential with numerical potential obtained with BEM on the spheroid 
are done for prolate (at  η=ηa) and oblate (at  ζ=ζa) spheroids for a dipole located on  z axis in  ξ 
direction. The location of the dipole is changed from 0 to 1.4 with 0.1 steps and at each step relative 
difference measure (RDM) is calculated [17]. In Figure 4 the RDM plots are given for prolate and 
oblate spheroids with respect to the location of the dipole in z direction.
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Figure 4 Relative difference measures between the analytical and numerical potential solutions. The dipole is 

located in ξ direction on z axis at z=0,0.1,0.2,…1.4 (a) for prolate spheroid with ηa=1.5 (b) for oblate spheroid 
with ζa=1.5.

In the analytical solution of potential for prolate and oblate spheroid the summations on l are taken 
from 1 upto 18 for prolate spheroid and 21 for oblate spheroid. For l=0, the potential is zero [], after 
17  for  prolate  spheroid  and  21  for  oblate  spheroid  the  change  in  the  potential  is  almost  zero. 
Therefore, it is enough to take the summations upto 17 or 21. In Figure 5 the potentials are plotted 
with respect to  l for oblate and prolate spheroid at node 20. It  is seen that after  l=14 for prolate 
spheroid and l=20 for oblate spheroid the change in the potential decreases to 0.5% of the change in 
the potential for l=1. 
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Figure 5. Analytical potential calculated at one node to show how the potential changes as l increases (a) for 

prolate spheroid, (b) for oblate spheroid.

The accuracy of the analytical potentials are tested with the numerical solutions of BEM using a mesh 
having 512 quadratic, isoparametric elements and 1026 nodes. The numerical solutions of BEM are 
tested  with  the  analytical  solutions  of  a  sphere  and  are  known  to  give  accurate  results  with 
approximately 1% error [1,15]. The reason for using quadratic elements is that it is possible to obtain 
accurate results using 512 elements. With linear elements, to obtain accurate results, a denser mesh 
should be used [15].
 

4. CONCLUSION

In this study, the analytical formulations for the solution of the potential distributions due to a current 
dipole in uniformly conductive spheroids are implemented.  The accuracy in solutions is tested with 
the  results  obtained  using  Boundary Element  Method (BEM) with  a  mesh  having 512 quadratic 
elements. The solutions of analytical and numerical potential fields are compared as the depth of the 
dipole inside the spheroid is increased. The comparison is done for prolate and oblate spheroids. 

For prolate spheroid the error is calculated as 1 % for dipole locations between z = 0 and z = 1.1. For 
dipole locations greater than  z = 1.1 the error increases dramatically. For oblate spheroid, the error 
decreases from 3.5 % (at z = 0) to 2.5 % (at z = 1.1). For dipole locations greater than z = 1.1 the error 
increases as in the prolate spheroid case. It is observed that in oblate spheroid the error is larger than 
in prolate spheroid case for the dipole locations between 0 and 1.1 in z direction. This may be caused 
by the  BEM meshes used for prolate and oblate spheroids. It may be possible to increase the accuracy 
in BEM solutions for the oblate case   using a different mesh structure, however, this is still under 
investigation.  

The BEM solutions  for  spherical  head models  reveal  that  the  error  increases  for  sources  located 
nearby the head surface [1]. It is also stated in [19] that, the maximum error in BEM occurs when the 
dipoles approach to the head surface closer than the mean triangle edge length. In this study, similar 
behavior is observed for spheroids. It  is concluded that the numerical results  are not accurate for 
shallow dipoles in spheroids. Consequently, the analytical solutions for spheroidal head models can 
be used instead of BEM models for the future inverse problem solutions. 
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