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Received: 27 June 2007 / Accepted: 5 February 2008 / Published online: 26 February 2008

� International Federation for Medical and Biological Engineering 2008

Abstract Boundary element method (BEM) is one of the

numerical methods which is commonly used to solve the

forward problem (FP) of electro-magnetic source imaging

with realistic head geometries. Application of BEM gen-

erates large systems of linear equations with dense

matrices. Generation and solution of these matrix equations

are time and memory consuming. This study presents a

relatively cheap and effective solution for parallel imple-

mentation of the BEM to reduce the processing times to

clinically acceptable values. This is achieved using a par-

allel cluster of personal computers on a local area network.

We used eight workstations and implemented a parallel

version of the accelerated BEM approach that distributes

the computation and the BEM matrix efficiently to the

processors. The performance of the solver is evaluated in

terms of the CPU operations and memory usage for dif-

ferent number of processors. Once the transfer matrix is

computed, for a 12,294 node mesh, a single FP solution

takes 676 ms on a single processor and 72 ms on eight

processors. It was observed that workstation clusters are

cost effective tools for solving the complex BEM models in

a clinically acceptable time.
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1 Introduction

In electro-magnetic source imaging (EMSI), the aim is to

determine the distribution of the electrical activity inside

the brain using the electroencephalography (EEG) and

magnetoencephalography (MEG) measurements [4, 15, 19,

26, 35, 39]. The forward problem (FP) of EMSI is defined

as calculating the electric potentials/magnetic fields on/

near the scalp surface, given the electrical activities in the

brain [16]. The inverse problem (IP) is defined as finding

the electrical activities from these measurements. It is

apparent that accurate results require accurate modeling

[13, 14, 34]. Since analytical solutions for the FP are not

available for realistic head models, numerical methods are

employed. Boundary element method (BEM) is a numeri-

cal method that solves the electric potentials and magnetic

fields on the boundaries of different conductivity regions

[13, 14, 18, 27, 29, 34, 36]. In the BEM formulation, the

integral equations on the boundaries are discretized to form

a linear system of equations. However, when realistic head

models are used, generation and solution of the resulting

equation is computationally expensive. The purpose of this

study is to present a scalable parallelization scheme using a

Beowulf cluster [11]. The advantages of such a system are

twofold: speeding up the FP calculations and elimination of

the memory limitations.
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Computational complexity is a limiting factor that pre-

vents the use of detailed BEM models. In order to avoid

long processing times and to prevent running out of

memory, even the recent studies use coarse meshes for

realistic models [17]. Recent work by Akalın-Acar and

Gençer [2], introduced the accelerated BEM formulation

for EEG and MEG in order to speed-up the FP solutions.

Accelerated BEM formulation computes transfer matrices

from the BEM system matrix (coefficient matrix) and

electrode/sensor positions. Once these matrices are com-

puted, the FP solutions are reduced to simple matrix-vector

multiplications. Unfortunately, even with accelerated BEM

approach, the pre-computation phase takes a long time

for detailed meshes, and the transfer matrices require

additional memory.

Parallel processing is one way of reducing the compu-

tational requirements of a computationally complex

problem. Parallel implementation of the BEM was previ-

ously used to solve various engineering problems [6, 37,

44]. While there is no parallel implementation of BEM for

the EMSI FP, there are several studies that used parallel

processing with the finite element method (FEM) to solve

the FP of EMSI [1, 20, 47].

For a parallel implementation of EMSI using BEM, the

algorithms must be chosen according to the requirements

of the formulations and the problem. The BEM system

matrix is large, and has no special properties such as

symmetry and positive-defineteness. Furthermore, the

required number of solutions (number of sensors) is small

compared to the size of the matrix. Therefore, it is not

feasible to use direct (Gauss elimination based) solution

methods. Instead, iterative methods can be applied.

Iterative methods are divided into two main groups:

stationary methods and Krylov subspace methods (KSMs)

[10]. It has been shown that, for the BEM, there are effi-

cient robust iterative KSMs which are better than the

Gauss-based methods in complexity [30] and thus in pro-

cessing time. They are also superior to stationary methods

in convergence rate.

In this study, a workstation cluster of eight computers is

used as a computational platform [11]. To solve the system

of equations, the portable, extensible toolkit for scientific

computation (PETSc) [5] is employed which allows the use

of almost all KSMs in the literature. Using this framework,

a parallelization scheme is proposed to solve the FP of

EMSI using the accelerated BEM.

The paper will proceed as follows: first, a general

overview of the BEM and its computational aspects are

presented. Next, the proposed parallelization scheme is

introduced. Finally, the performance of different KSMs in

the solution of the BEM equation is assessed and the speed-

up provided by the parallelization scheme is reported.

2 Methods

2.1 Overview of the boundary element method

The BEM is a numerical method that models the

boundaries between regions of uniform conductivity. The

FP of EMSI can be expressed in terms of the surface

integrals over these boundaries, and BEM uses triangular

surfaces to discretize the problem and expresses it in

terms of a matrix equation. The matrix Eq. (1) provides

the relationship between unknown surface potentials and a

source term:

AU ¼ g ð1Þ

where U is a vector of node potentials, A is a matrix whose

elements are determined by the geometry and electrical

conductivity of the head and g is a vector representing the

contribution of the primary sources.

When the node potentials are computed, the magnetic

field at a given sensor position can be obtained from these

potentials by:

B ¼ B0 þHU ð2Þ

here, B is a vector representing the magnetic fields at the

sensor locations. The vector B0 is the magnetic field at the

same sensor locations due to the same sources in an

unbounded homogenous medium. The H matrix is a

coefficient matrix determined by the geometry and elec-

trical conductivity of the head.

When solving the BEM matrix, the significant conduc-

tivity difference between the brain and the skull may cause

numerical instability [29]. This instability can be overcome

by computing a correction term (U3
0) for the right-hand-side

of the matrix equation. This technique is called the isolated

problem approach (IPA) [22, 29].

When solving the IP, it is sufficient to solve the FP at the

sensor locations. Accelerated BEM [2] generates a transfer

matrix describing the relationship between the sensors and

the sources. Using the transfer matrix, the sensor poten-

tials/magnetic fields are obtained by a simple matrix-vector

multiplication:

Ue ¼ DU ¼ DA�1g

¼ Eg
ð3Þ

where D is sparse matrix that describes each electrode

potential in terms of node potentials. Since the number of

sensors (m) is much less than the number of nodes, it is

much faster to solve the following equation for each

column of E:

ATei ¼ di ð4Þ

Similarly, for the MEG,
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B ¼ B0 þHA�1g

¼ B0 þMg
ð5Þ

and

ATmi ¼ hi ð6Þ

After computing the transfer matrix E, the FP solution for a

given source reduces to calculating g for that source and

performing a matrix-vector multiplication.

The details of the BEM formulation were described in

[2, 21, 22] and are summarized in the Appendix.

2.2 Computational complexity

2.2.1 Accelerated BEM for EEG

To obtain the EEG transfer matrix E, one must first

calculate the coefficient matrix A in Eq. (1). Each row of A

is calculated by visiting all elements of the mesh for sur-

face integration. On each element, the surface integral is

approximated by a weighted sum of potentials at the

Gauss–Legendre quadrature points [12, 21]. For elements

close to the field node, recursive integration [17] is used for

better accuracy.

The number of floating point operations (flops) is then

proportional to N 9 E 9 Ngp 9 Nnpe 9 Cint, where N is

the number of nodes, E is the number of elements, Ngp is

the number of Gauss–Legendre points, Nnpe is the number

of nodes per element, and Cint is the complexity of recur-

sive integration.

Once the coefficient matrix A is obtained, the transfer

matrix E is calculated by solving the matrix Eq. (4) for m

different right hand side vectors. At this stage, the total

number of matrix-vector multiplications is m 9 i where i

denotes the number of iterations that depends on the mesh

size and the KSM used.

To calculate U3
0 for a given source configuration, inverse

of the sub-matrix As is required [29]. In this study, As
-1 is

computed using the generalized minimal residual (GMRES)

[43] algorithm. Consequently, the computational complex-

ity in calculating As
-1 becomes 2N2 9 Nmv 9 m, where Nmv

is the number of matrix-vector multiplications. It is noted

that, this phase of the accelerated BEM approach appears to

be the main computational load of the FP solution.

2.2.2 Accelerated BEM for MEG

To obtain the MEG transfer matrix M, the same coefficient

matrix A is required. Thus, once A is computed it can be

used for the computation of both transfer matrices.

The next step in the calculation of M is the solution of

(6) using n different vectors hi on the right hand side. The

number of matrix-vector multiplications of this phase is

m 9 i, where i denotes the number of iterations that

depends on the mesh size and the KSM used.

The computational complexity for U3
0 is given in

the previous subsection. To incorporate IPA, an additional

matrix-vector multiplication is required. This brings flops

proportional to m 9 Nbr, where Nbr is the number of the

nodes on the inner skull boundary [2].

2.3 Parallel implementation of the accelerated BEM

approach

2.3.1 Data partitioning

The purpose of using a parallel cluster is twofold: (1)

to reduce the computation time, and (2) to combine the

memory and storage resources of the computing nodes

(computers). As a result, using a parallel cluster makes it

possible to solve large sized problems, which would

otherwise cause running out of memory on a single

workstation. When the problem is distributed into the

cluster, the following data are considered:

Mesh data: The mesh data consists of the node co-

ordinates and element connectivity information. It is used

during the construction of the coefficient matrix A. The

BEM coefficient matrices are dense, i.e., each node con-

tributes to the potential of any other node. To provide faster

processing in matrix filling, mesh information must be kept

on each processor.

Coefficient matrix A: For the accelerated BEM

approach, the transpose of the coefficient matrix is required

in Eq. (4). This matrix is computed and stored row-by-row

on each processor.

Sub-matrix As: When IPA is used, the coefficient matrix

for the inner mesh (As) is required to compute the modified

right-hand-side vectors [29]. In this study, the rows of As is

computed directly at each processor and an iterative solu-

tion is obtained for each source configuration.

The transfer matrices: The IP of EMSI requires suc-

cessive matrix-vector multiplications using E, and for

faster operations, this matrix must be distributed among the

processors. For this purpose, each row of E is collected

from all the processors to the appropriate processor. We

preferred a row-based matrix distribution since the addi-

tional communication burden is not significant as long as

the number of nodes, N, is larger than the number of

processors, Nnp. In this study, the number of processors is 8

and the number of nodes is at least 12,294. Thus, the

communication overhead is acceptable.

2.3.2 Constructing the transfer matrix

The PETSc library distributes matrices among the pro-

cessors as sets of rows. Since the parallel cluster is
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homogeneous, each processor keeps equal number of suc-

cessive rows. For optimum performance, each processor

should compute its corresponding rows, minimizing inter-

processor communication time.

Using the BEM formulation given in the previous sec-

tion, each row of the BEM coefficient matrix A can be

constructed independently. For problems where the number

of nodes is significantly larger than the number of pro-

cessors, such a matrix filling scheme may provide a speed-

up which is proportional to the number of processors. This

is the case for the sub-matrix As used by the IPA. On the

other hand, computation of the transfer matrices require

AT. Since obtaining the transpose of a matrix is an

expensive operation, we preferred to construct AT directly.

Unfortunately, constructing AT row-by-row, with minimal

inter-processor communication is not straightforward. The

source nodes are distributed among the processors, and

contribution of source nodes to the potential at a specific

field node is obtained through the surface integrals. Stan-

dard matrix filling procedure, where each element is

processed sequentially for each field node, results in mul-

tiple access to each source node, at a random sequence.

This process becomes inefficient when the source nodes are

distributed, since either additional communication or

redundant computation is required to fill the matrix. Thus,

for efficient computation, a more complicated filling

scheme is applied.

The filling scheme is based on selecting the elements-to-

process in an intelligent way to avoid redundant compu-

tation due to multiple visits to an element. For that purpose,

for each source node, the elements that the node is con-

nected are processed. On each of these elements, the

corresponding matrix entries in the rows owned by the

processor are calculated and set according to the numerical

integration on the element. Thus, contribution of each

element node is added to the row and column of the field

node. The element is then marked as ‘‘visited’’ to avoid

future visits. While this scheme prevents idle or inefficient

element visits and eliminates inter-processor communica-

tion, some redundant computation occurs due to elements

having nodes in more than one processor.

Speed-up in filling the system matrix A strictly depends

on the mesh representation. It is possible to improve the

speed-up in matrix generation by modifying the initial

mesh ordering. To avoid redundant element visits during

matrix filling, the nodes must be reordered so that the

nodes of each element take nearby indices. The elements

must also be ordered so that neighboring elements have

nearby indices. Such a mesh representation is obtained as

follows:

1. The nodes of each boundary are sorted according to

their z-coordinates.

2. The new indices are updated in the element data.

3. The elements are sorted according to the indices of

their nodes.

4. The meshes of different boundaries are merged

(concatenated).

2.3.3 The parallel computation cluster

Figure 1 illustrates the present configuration of the cluster

named Marvin. The four Nodelin workstations are con-

nected to each other over a 100 Mb/s Ethernet switch and

the Athlin nodes are connected to each other over a Gigabit

Ethernet switch. All cluster nodes are running under the

Linux operating system. The controlling workstation is

running FreeBSD and provides access to the cluster nodes.

The computation nodes have the following libraries for

parallel processing and numerical operations: message

passing interface (MPI) [25], automatically tuned linear

algebra subroutines (ATLAS) version [46] of basic linear

algebra subprograms (BLAS) [32], linear algebra package

(LAPACK) [3], and PETSc [5]. These libraries are orga-

nized in a layered structure, in which the PETSc is the

topmost layer.

3 Results

3.1 Head models

Meshes are generated from 72-slice segmented MR ima-

ges. The meshes are constructed using a semi-automatic

mesh generation algorithm [2]. For this purpose, first the

segmented volume is triangulated using the skeleton

climbing algorithm [40] then it is coarsened until the

desired number of elements is obtained [28]. Figure 2

shows a fine mesh (with 30,000 nodes).

Fig. 1 The Marvin cluster structure. The cluster is composed of two

groups: athlins have single AMD 2,500+ (1,833 MHz) processors on

each PC (1.5 GB RAM), nodelins have dual PIII (933 MHz) processors

on each PC
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3.2 Assessment of accuracy

The accuracy in the FP solutions was tested in [2, 21]. In

the present study, the parallel version of the accelerated

BEM approach is tested using a spherical three-layer Rush

and Driscoll model [42]. In this model, the radii of the

brain, skull and scalp surfaces are 8, 8.5 and 9.2 cm and the

corresponding conductivities are 0.2, 0.0025 and 0.2 S/m,

respectively. The accuracy for tangentially and radially

oriented dipoles at varying depths are tested with the

analytical solutions [45]. The results are the same with the

ones presented for a single-processor implementation [2].

3.3 Performances of the KSMs

The computation times for various KSMs are explored for

different number of processors. For this purpose, the three-

layer Rush and Driscoll head model (with 12,294 nodes

and 6,144 elements) is used. Then the matrix Eq. (4) is

solved by each KSM with different number of processors.

Table 1 presents the average solution times for various

KSMs.

It is observed that, the GMRES method has the best

performance among the evaluated KSMs. This is an

expected result since GMRES is generally the most robust

method for dense matrix equations. Preconditioning

improves the convergence (the number of iterations before

convergence reduces), but not the convergence time. These

results are consistent with the ones reported in [41].

In the computation process of E, a non-zero initial guess

for each row (ei) greatly improves the convergence. This is

due to the diagonally dominant characteristic of A (and A-1).

Fig. 2 A fine head model (30,000 nodes): a scalp (10,002 nodes,

5,000 elements), b skull (10,001 nodes, 4,999 elements), c brain

(9,796 nodes, 5,000 elements)

Table 1 Solution times (in seconds) for different KSMs using dif-

ferent number of processors

Processors GMRES Bi-

CGSTAB

CGS TFQMR CR CGNE

1 93.16 112.29 124.36 114.62 151.16 1,120.01

2 42.87 45.86 50.51 50.21 66.91 469.82

3 41.45 48.75 49.85 49.42 65.55 462.18

4 20.57 25.36 24.71 24.57 34.18 248.97

5 17.09 20.43 16.44 16.67 22.49 169.24

6 16.48 20.46 19.70 16.98 23.98 157.94

7 12.50 14.39 14.47 13.31 19.50 147.69

8 10.99 13.10 13.18 13.16 18.11 137.02

GMRES generalized minimal residual, Bi-CGSTAB bi-conjugate

gradients stabilized, CGS conjugate gradients squared, TFQMR
transpose-free quasi-minimal residual, CR conjugate residuals, CGNE
conjugate gradient on normalized equations. A three-layer concentric

sphere head model of 12,294-nodes is assumed
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In this implementation, the initial estimate is selected as the

right-hand side vector.

3.4 Speed-up

When the FP solutions are obtained using large number of

nodes with a single processor, computation time and

memory requirements increase. For a mesh of 30,000 nodes,

for instance, the system matrix contains 900 million double

precision entries, which corresponds to 7.2 GB of memory.

Since each node in the parallel cluster has 1.5 GB of

memory, this memory requirement can only be supplied by

five or more nodes of the cluster. Thus, to compute speed-up

figures for the full range of processors, a small three-layer

spherical model with 12,294 nodes is used. The perfor-

mance of parallelization is also tested for the two realistic

head models (the fine mesh is presented in Fig. 2, and

referred as Mesh 2 in Table 2). The parallelization perfor-

mance of various stages are presented in Fig. 3. These

stages are: (1) filling the system matrix, (2) construction of

the transfer matrix E, (3) solution of the isolated problem,

(4) computation of the modified right hand side vector g0

and (5) obtaining the potential distribution by Eg0.
For the spherical (12,294 node) and the coarse realistic

(Mesh 1:15,011 node) meshes, the speed-up assessment for

filling A and E matrices is performed by taking the two-

processors experiment as the reference, instead of the one

with single-processor experiment. The reason for this

choice is the swap space used in the single-processor case,

which slows down the computations.

The speed-up efficiency (speed-up/number of proces-

sors) varies for different phases of the FP solution process.

As expected, efficiency drops for increased number of

processors. The efficiency values for the spherical and

realistic models are presented in Table 2. The efficiency

values for matrix filling get their values at the transition

from single-processor to two-processors case (the library

switches to parallel mode) and remain very close to these

values for increased number of processors. For the cases

where the single-processor data are not available, the

efficiency values are very close to 100%. For instance, the

computation time with two processors is approximately

four times longer than that of eight processors case.

4 Discussion

In solving the EMSI IP, many FP solutions are required.

Thus, once the coefficient and transfer matrices are com-

puted, the speed-up in the FP solution becomes important.

Note that, once the transfer matrix, E, is calculated, it can

be used on a single-processor to compute the FP solutions.

This is possible because the transfer matrix E uses much

less memory, compared with the coefficient matrix A, and

fits the memory of a single node. When the linear approach

is used for the IP solutions, the FP is solved for a large

number of source locations. In such as case, it is possible to

split the source space among the processors. Each node

then solves the FP for the assigned dipoles with 100%

efficiency. Thus, the choice of the IP approach should

determine the technique used in the FP solutions.

Fig. 3 Test of parallelization efficiency using spherical and realistic

models. a Filling A and As, b computation of E and As
-1, and

c computation of single FP solutions

Table 2 Efficiency of parallelization in various phases of the BEM

implementation

Mesh As

fill

(%)

As
-1

computation

(%)

A
fill

(%)

E
computation

(%)

Single

FP

solution

(%)

Spherical 65.8 131.5 66.4 127.9 117.4

Mesh 1 65.6 96.6 95.3 97.5 94.2

Mesh 2 67.7 – 91.2 85.8 98.7
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Each phase of FP solution yields different efficiency

(speed-up/number of processors) figures. Note that some

efficiency figures are greater than 100%. These super-linear

efficiency values are explained by cache scaling. With

increased number of processors, the total amount of avail-

able processor cache increases and more data is processed

on these fast memory units resulting in faster operation.

When spatio-temporal behavior of the sources is of

interest, the number of IP solutions is equal to the number of

samples taken from EEG/MEG recordings. An increase in

the temporal resolution requires more operations, yielding

longer computation time. For a single-processor case, the IP

computations may take hours, even for a single instant.

Parallelization provides the ability to combine the

memory resources of all nodes. When solved on a single

node, the realistic meshes used in this study consumes all

the memory and start using swap space, further slowing

down the computation. Since the coefficient matrix

requires memory proportional to the square of the number

of nodes, more computation nodes (memory) is required

for large meshes. For instance, the 30 K node mesh

requires more than five processors to be processed properly

without using the swap space.

When incorporating the IPA, we preferred iterative

solutions instead of calculating As
-1. For the FP solutions,

this choice increases the solution time for a given source

configuration (from 32 to 72 ms for the 12 K mesh and

from 41 to 520 ms for the 15 K mesh). Note that, inversion

of As may take hours depending on the size of this matrix.

Thus, for the IP, iterative IPA solution is computationally

preferable if the number of FP solutions is much smaller

than the number of nodes in As. If this is not the case, the

use of direct inversion or LU factorization will definitely be

a better choice for the IPA solution.

The importance of IPA increases with the conductivity

ratio around the inner-skull layer (b). For the numerical

accuracy of the BEM formulation IPA must be used for

b values smaller than 0.1 [29]. For the three layer head

model used in this study, b corresponds to the skull/brain

conductivity ratio. This ratio was assumed to be 1/80 which

is the value measured by Rush and Driscoll [42], and later

by Goncalves et al. [24]. Recent studies, however,

report that this ratio is around 1/20 rather than 1/80 [31, 38,

48]. With this ratio, IPA is still required. The benefits of

parallel implementation are valuable even if IPA is not

required.

5 Conclusion

When the spatio-temporal behavior of electrical activities

in the brain is explored for the clinical applications,

the computation time is critical, and efficient

parallelization is crucial. This study investigated the use of

parallel processing in the solution of the EMSI FP with

highly realistic head models. For this purpose, the accel-

erated BEM approach [2] was implemented using a

Beowulf cluster with eight nodes (PC workstations).

Our main contributions are summarized as follows: (1)

A feasible and scalable parallelization scheme is presented

for the accelerated BEM approach. (2) The performance of

the proposed parallelization scheme is tested. It was

observed that our scheme provides memory scaling as well

as faster operation with a considerable speed-up in the

matrix filling, transfer matrix calculation and solution

phases. (3) Some practical issues in parallelization are

addressed. (4) The solution times for the resultant equa-

tions were compared for various KSMs and the fastest

method (GMRES) is reported.
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Appendix: BEM formulation

The electric potential / and the magnetic field B due to a

current dipole source p in a piecewise homogeneous vol-

ume conductor model of the head, satisfy the following

integral equations [23]:

�r/ðrÞ ¼ gðrÞ þ 1

4p

XL

k¼1

ðr�k � rþk Þ
Z

Sk

/ðr0ÞR
R3
� dSkðr0Þ;

ð7Þ

BðrÞ ¼ B0ðrÞ þ
l0

4p

XL

k¼1

ðr�k � rþk Þ
Z

Sk

/ðr0ÞR
R3
� dSkðr0Þ:

ð8Þ

Here, the surfaces between different conductivity regions

are denoted by Sk, k = 1...L. The inner and outer

conductivities of Sk are represented by rk
- and rk

+,

respectively. R = r-r0 is the vector between the field

point r and the source point r0, and �r is the mean

conductivity at the field point. The contribution of the

primary sources, g and B0, are defined as follows:

gðrÞ ¼ 1

4pr0

p � R
R3

; ð9Þ

B0ðrÞ ¼
l0

4p
p� R

R3
; ð10Þ

where r0 is the unit conductivity and l0 is the permeability

of the free space. Equations (7) and (8) can be solved

numerically by dividing the surfaces into elements and

computing the surface integrals over these elements

[7–9, 23]. The surface elements used in this study are
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triangular, quadratic and isoparametric. Using (7) for all

nodes and integrating over all elements, a set of equations

with N unknowns can be obtained (here N denotes the

number of nodes in the BEM mesh). In matrix notation,

this can be expressed as:

U ¼ gþ CU

ðI� CÞU ¼ g

AU ¼ g

ð11Þ

where U is an N 9 1 vector of node potentials, C is an

N 9 N matrix whose elements are determined by the

geometry and electrical conductivity of the head and g is an

N 9 1 vector representing the contribution of the primary

sources. U is then obtained as:

U ¼ A�1g ð12Þ

To eliminate the singularity in the coefficient matrix A, the

method of matrix deflation is employed [33]. IPA is

implemented to overcome numerical errors caused by high

conductivity difference around the skull layer [29]. Once U
is computed, B is calculated from the potential values using

(8). In matrix notation this can be written as follows:

B ¼ B0 þHU ð13Þ

If the number of magnetic sensors is m, B is an m 9 1

vector representing the magnetic fields at the sensor loca-

tions, and B0 denotes the m 9 1 vector of magnetic fields

at the same sensor locations for an unbounded homoge-

neous medium. Here, H is an m 9 N coefficient matrix

determined by the geometry and electrical conductivity of

the head.

References

1. Acar CE (2003) Parallelization of the forward and inverse

problems of electromagnetic source imaging of the human brain.

Ph.D. thesis, Middle East Technical University, Ankara, Turkey
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19. Gençer NG, Acar CE, Tanzer IO (2003) Forward problem solu-

tion of magnetic source imaging. In: Lu ZL, Kaufman L (eds)

Magnetic source imaging of the human brain. Lawrence Erlbaum

Associates, Hillsdale
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