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A Natural Basis for Efficient Brain-Actuated Control

Scott Makeig, Sigurd Enghoff, Tzyy-Ping Jung, and
Terrence J. Sejnowski

Abstract—The prospect of noninvasive brain-actuated control of
computerized screen displays or locomotive devices is of interest to many
and of crucial importance to a few ‘locked-in’ subjects who experience
near total motor paralysis while retaining sensory and mental faculties.
Currently several groups are attempting to achieve brain-actuated control
of screen displays using operant conditioning of particular features of
the spontaneous scalp electroencephalogram (EEG) including central

-rhythms (9–12 Hz). A new EEG decomposition technique, independent
component analysis (ICA), appears to be a foundation for new research in
the design of systems for detection and operant control of endogenous EEG
rhythms to achieve flexible EEG-based communication. ICA separates
multichannel EEG data into spatially static and temporally independent
components including separate components accounting for posterior
alpha rhythms and central activities. We demonstrate using data from
a visual selective attention task that ICA-derived -components can show
much stronger spectral reactivity to motor events than activity measures
for single scalp channels. ICA decompositions of spontaneous EEG would
thus appear to form a natural basis for operant conditioning to achieve
efficient and multidimensional brain-actuated control in motor-limited
and locked-in subjects.

I. INTRODUCTION

Recent work in several laboratories has demonstrated that noninva-
sively recorded electric brain activity can be used to voluntarily con-
trol switches and communication channels, allowing a few so-called
locked-in near-totally paralyzed subjects the ability to communicate,
however slowly, with their families and aides ([4]; [14]; [2]). Com-
munication rates achieved to date are in the range of several bits a
minute, far from rates that would allow locked-in persons access to
normal social interaction. This communication briefly describes a tech-
nique for blind decomposition of electroencephalogram (EEG) data
into temporally and often functionally independent components that
would appear to provide a natural basis for optimizing brain-actuated
control ([7]; [9]). An example is given of a decomposition of sponta-
neous EEG in one subject into four components accounting for spatially
distinguishable though widely overlapping posterior alpha and central
�-rhythmic activities. Learned control of the amplitude of motor-re-
lated central�-rhythms in the alpha frequency range (8–12 Hz) ([5]) is
being used for brain-actuated control by at least two groups ([13]; [15]).
We demonstrate that the motor-response related spectral perturbations
demonstrated by the independent component analysis (ICA)-defined
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Fig. 1. Scalp maps and mean power spectra of four independent components of the EEG of one subject in 554 3-s epochs beginning 1 s before target stimulus
presentations. The ordinate gives root mean square power in all 31 scalp channels in relative log dB units. In the scalp maps, representing the projections to the
scalp of the same four independent components, dark and light regions represent projections of opposite polarity.

�-components may be 6 dB larger than at optimally placed single scalp
channels. More generally, we suggest that ICA decomposition may
form a natural basis for achieving efficient EEG-based brain-actuated
control in locked-in subjects as well as the much larger group of mo-
torically limited subjects.

II. M ETHODS

1) Task: Event-related brain potentials (ERP’s) were recorded
from subjects who attended to randomized sequences of filled round
disks appearing briefly inside one of five horizontally-arrayed outlined
squares that were constantly displayed above a central fixation cross.
During each 76-s block of trials, one of the five squares was colored
green, marking the location to be covertly attended during the block.
Filled white circles were displayed for 117 ms within one of the five
squares in a pseudo-random sequence at interstimulus intervals (ISI’s)
of 250 to 1000 ms. Right-handed volunteer subjects were instructed
to maintain fixation on the central cross while responding as soon as
possible to stimuli presented in the attended square via a right-hand
thumb button. For further details, see papers by [10], [11].

2) Data Collection: EEG data were collected from 29 scalp elec-
trodes and from two periocular electrodes placed below the right eye
and at the left outer canthus. All channels were referenced to the right
mastoid with input impedance less than 5 k
. Data were sampled at 512
Hz within an analog pass band of 0.01–50 Hz. To further minimize line
noise artifacts, EEG data were digitally low pass filtered below 40 Hz
prior to analysis. Three-second intervals surrounding stimulus presen-
tations were extracted from the data for this analysis.

3) Analysis: Infomax ICA [1] exploits temporal independence of
source signal waveforms to perform blind separation, by finding a
square “unmixing” matrix by gradient ascent that maximizes the joint
entropy of a nonlinearly transformed ensemble of zero-mean input
vectors (see [10]). The algorithm can be used on data from 100 or more
channels. At the end of training, multiplying the input data matrix
by the “unmixing” matrix gives a new matrix whose rows, called
the component activations, are the time courses of relative strengths
or activity levels of the respective independent components across
conditions. The columns of theinverseof the unmixing matrix give
the relative projection strengths of the respective components onto
each of the scalp sensors. These may be interpolated to show thescalp
map associated with each component. ICA scalp maps are similar
to spatial PCA eigenvectors orfactor loadings. Unlike components
produced by PCA, however, component scalp maps found by ICA

are not constrained to be orthogonal and thus are free to accurately
reflect the actual projections of functionally separate sources, if they
are successfully separated. (More information and a collection of
MATLAB and C-language routines for performing and visualizing the
analysis are available atwww.cnl.salk.edu/�scott/ica.html). For each
subject, three-second EEG epochs (from 1000 ms before to 2000 ms
after each stimulus presentation,N = 2877) were concatenated and
submitted to infomax ICA analysis using MATLAB routines. Training
time on a modern workstation was approximately four hours using the
MATLAB (or 30 min using the C-language code). Scalp maps and
power spectra for each of the resulting 31 components were plotted.
Target-locked activations(N = 554) of selected components were
submitted to wide band event-related spectral perturbation (ERSP)
analysis ([8]) to determine their mean spectral reactivities to stimulus
and motor response events. ERSP’s were constructed by transforming
overlapping 500-ms subepochs of the 3-s target response epochs
to spectral power by Hanning-windowed FFT’s, then summing log
spectra for each subepoch sequentially. Finally, the mean log power
spectrum in the prestimulus period was subtracted from the log
spectrum for each subepoch.

III. RESULTS

Nearly all the larger independent EEG components could be segre-
gated into components accounting for early or late activity in the aver-
aged target event-related potential (ERP), components accounting for
eye movements or muscle activities or components accounting for par-
ticular features of the ongoing EEG, including oscillatory activity ([3]).
Decompositions from most subjects included components with a spec-
tral peak in the alpha range. Further details will be reported elsewhere.

Fig. 1 shows scalp maps and mean power spectra of four independent
components of the EEG from one subject. Two of the components (�1
and�2) had occipital maxima and two more (�L and�R) bipolar scalp
distributions with polarity reversals over left and right central cortex
respectively. The peak oscillatory frequency of the� components was
about 0.5 Hz higher than that of the� components. The� component
also contained broader peaks near 22–23 Hz.

Fig. 2 shows the mean target-related ERSP results for the four
components. Activities of the central components were suppressed at
three frequencies, near 11, 23, and 33 Hz following the motor response
(median response time or RT, 346 ms). Inspection revealed that the
onset of this suppression was reliably time locked to the moment
of motor response in single trials, consistent with the well-known
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Fig. 2. Mean target-related event-related spectral perturbation (ERSP) plots for the same four components. The abscissa shows time relative to target presentation;
the ordinate, EEG frequency. Times of stimulus presentation and median reaction time (RT) are indicated with broken lines. The color scale shows increases and
decreases in spectral power from the pre-stimulus baseline in dB units. The two components labeled� (lower panels) showed marked and prolonged suppression
at three frequencies (near 11 Hz, 23 Hz and 33 Hz) following median reaction time (RT), plus brief augmentations near 16 Hz near 1000 ms. By contrast, ERSP
features for the posterior alpha components (upper panels) were much weaker and shorter-lasting.

Fig. 3. The ERSP of the left-hemisphere�-component� (Fig. 2, lower
left) reproduced above five scalp maps showing the distribution of spectral
suppression at five time/frequency extrema. Note the difference in size and
scale between the larger ICA-component and smaller single-channel spectral
deviations (e.g., minima of approximately�12 dB in the ICA components
versus�6 dB in single channels).

�-rhythm blocking following movements. By contrast, the posterior
alpha component ERSP’s (upper panels) contained much weaker and
shorter lasting spectral changes.

In Fig. 3, the five scalp maps below the ERSP image for the�L com-
ponent (Fig. 2, lower left) show the raw scalp distribution of spectral
suppression or enhancement at the five indicated peak time/frequency
points. Note that the maximum suppression achieved in the component
ERSP (near 12 Hz and 700 ms,upper scale) was near�12 dB, whereas
the maximum suppression at single scalp channels (lower scale) was
less than�6 dB. (In a later analysis of 14 subjects to be reported more
fully elsewhere, the suppression advantage using ICA averaged about
5 dB). The scalp distribution of�-rhythm suppression (head2) peaked
just posterior to the scalp region overlying the left and right central
sulci, whereas the scalp projection of the�L component itself (cf.,
Fig. 1) contained two projection areas anterior and posterior to the left
central sulcal region. The bilateral�-rhythm suppression (Fig. 3,heads
1–3) is fairly well explained by the parallel suppression of mu-fre-

quency activity in both the left�L and right central�R components
(cf., Fig. 1).

IV. DISCUSSION

ICA separated temporally independent and spatially stable alpha and
�-rhythms from other neural and artifactual EEG sources. For the sub-
ject shown, ICA revealed at least four alpha- and beta-band components
that could be measured separately by experimenters and might presum-
ably be used as a basis for learned control. The components shown
here were obtained reliably in decompositions of various data subsets.
Although blocking of�-rhythms associated with (noncued) voluntary
or imagined movements is the basis for current brain-actuated control
efforts ([14]), it appears reasonable to assume that the same�-com-
ponents identified here as blocking after stimulus-triggered motor re-
sponses might also be blocked before or during imagined thumb move-
ments, and could possibly, therefore, be subject to direct voluntary con-
trol by the subject.

ICA increased the strength of motor-related signal changes in the
�-component shown in Fig. 3 by 6 dB over measures from single chan-
nels. Recent analysis of 14 subjects, to be reported fully elsewhere,
has confirmed that ICA-filtered EEG signals show reliably stronger�

blocking than single-channel spectral measures. By contrast, single-
channel measures, or measures combining heuristic combinations of
channels such as Laplacian derivations ([12]), may not use all the re-
sponse information contained in the component projections identified
by ICA. Nor might they be expected to separate the activities of these
components from artifactual and other neural EEG components as ef-
ficiently as ICA filtering. Thus ICA appears to provide a more natural
and efficient basis for research in operant training of single or multiple
endogenous features of EEG signals. For the relatively large number
of relatively incapacitated subjects who retain some control of ocular
and/or facial muscles, ICA might also be used to efficiently segregate,
monitor and effect control using potentials associated with eye blinks
and other muscle activity, as well as EEG features. ICA might then be
used for efficient operant conditioning of EMG-plus-EEG-based com-
munication by these subjects, as well as for precise monitoring of their
extent motor abilities for clinical and rehabilitation planning purposes.
However, the extent to which ICA-derived spatial filters may actually
increase the reliability and speed of brain-computer interfaces remains
to be determined.
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Brain–Computer Interfaces Based on the Steady-State
Visual-Evoked Response

Matthew Middendorf, Grant McMillan, Gloria Calhoun, and
Keith S. Jones

Abstract—The Air Force Research Laboratory has implemented and
evaluated two brain–computer interfaces (BCI’s) that translate the steady-
state visual evoked response into a control signal for operating a physical
device or computer program. In one approach, operators self-regulate the
brain response; the other approach uses multiple evoked responses.

Index Terms—Brain–computer interface (BCI), human–computer inter-
face, neural self-regulation.

I. INTRODUCTION

The Alternative Control Technology (ACT) program of the Air Force
Research Laboratory is engaged in the design and evaluation of a va-
riety of hands-free controls. These include eye, head, speech, elec-
tromyographic and electroencephalographic (EEG) systems that allow
communication with computers while the operators’ hands remain en-
gaged in other activities. For example, alternative controls may enable
maintenance technicians to manually operate test equipment while ac-
cessing schematics on a head-mounted display.

In general, EEG-based control uses selected aspects of the brain’s
electrical activity. However, this definition does not dictate a specific
control methodology. Interestingly, several different EEG-based con-
trol devices based on visual evoked responses have been developed
in parallel at various research institutions. For example, Farwell and
Donchin [1] developed a control based on the “P300,” a brain response
that varies as a function of stimulus probability and task relevance [1].
Careful design of the task format and procedures allowed these authors
to use the natural variance of the P300 for task control. Sutter [2], [3]
developed a control device based on the natural variation in cortical vi-
sual evoked potentials to determine the user’s direction of gaze relative
to a matrix of flickering stimuli [2], [3]. This system capitalizes on the
cortical magnification that occurs when a flickering stimulus is visu-
ally fixated.

EEG-based research in the ACT program has harnessed the steady-
state visual-evoked response (SSVER) as an effective communication
medium for brain–computer interfaces (BCI’s) [4]. Two methods of
using the SSVER for control have been employed. In one, operators
are trained to exert voluntary control over the strength of their SSVER.
In the second, multiple SSVER’s are used for control. The latter re-
quires little or no training because the system capitalizes on the natu-
rally occurring responses. The purpose of this paper is to describe these
SSVER-based BCI’s and to summarize research findings.

II. BCI BASED ON SELF-REGULATION OF THESSVER

A. Communication Task

Communication between the operator and the computer is binary in
the sense that only two control actions are possible. For example, a
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